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Abstract

The hundreds of endemic species of cichlid fishes in the East African Great Lakes Tanganyika, Malawi, and Victoria are
a prime model system in evolutionary biology. With five genomes currently being sequenced, eastern African cichlids also
represent a forthcoming genomic model for evolutionary studies of genotype-to-phenotype processes in adaptive radiations.
Here we report the functional annotation and comparative analyses of transcriptome data sets for two eastern African cichlid
species, Astatotilapia burtoni and Ophthalmotilapia ventralis, representatives of the modern haplochromines and ectodines,
respectively. Nearly 647,000 expressed sequence tags were assembled in more than 46,000 contigs for each species using
the 454 sequencing technology, largely expanding the current sequence data set publicly available for these cichlids. Total
predicted coverage of their proteome diversity is approximately 50% for both species. Comparative qualitative and
quantitative analyses show very similar transcriptome data for the two species in terms of both functional annotation and
relative abundance of gene ontology terms expressed. Average genetic distance between species is 1.75% when all
transcript types are considered including nonannotated sequences, 1.33% for annotated sequences only including
untranslated regions, and decreases to nearly half, 0.95%, for coding sequences only, suggesting a large contribution of
noncoding regions to their genetic diversity. Comparative analyses across the two species, tilapia and the outgroup medaka
based on an overlapping data set of 1,216 genes (;526 kb) demonstrate cichlid-specific signature of disruptive selection and
provide a set of candidate genes that are putatively under positive selection. Overall, these data sets offer the genetic
platform for future comparative analyses in light of the upcoming genomes for this taxonomic group.
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Introduction
Cichlid fishes from eastern African Great rift lakes and
surrounding rivers represent a major model for rapid specia-
tion in evolutionary biology (Kocher 2004; Seehausen 2006;
Salzburger 2009). More than 1,500 endemic species have
arisen in a fewmillions of years only, showing themost spec-
tacular adaptive radiations known in vertebrates (Seehausen
2006).Explosive radiations in thecichlid speciesflocksof lakes
Victoria, Malawi, and Tanganyika are mostly documented by
paleo-geographical (i.e., the ages of the lakes) andmolecular
data. Lake Victoria, for example, is only between 200,000
and 500,000 years old and fell dry about 15,000 years ago

(Johnson et al. 1996). Still, it harbors an endemic flock of sev-
eralhundredspeciesthatare likely tohavediversified inamax-
imum of about 100,000 years only (Verheyen et al. 2003).
Accordingly, preliminary molecular data from partial
genomes, nuclear andmitochondrial markers of East African
cichlids have inferred a highly similar genetic background
among species (Sturmbauer and Meyer 1993; Aparicio
etal.2002;Lohetal.2008).This is in strongcontrastwith their
tremendous diversity ofmorphotypes and ecological adapta-
tions (Salzburger 2009) suggesting that, in cichlids, rapid
phenotypicdiversification is largelyuncoupled fromanequiv-
alent molecular diversity in coding regions. Hence, cichlids
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represent an ideal system to dissect the genetic bases of
several universal phenotypic traits (such as coloration, body
morphology, color vision, etc.) and—more generally
speaking—to explore the molecular evolutionary processes
underlying diversification and ecological speciation.

An increasing number of studies in animals points to the
diversity of transcriptomes and especially of the expression
profiles (thus including regulation of gene expression) as the
bridging link that translates highly similar genomes at pro-
tein-coding genes into the astonishing diversity of phe-
nomes (i.e., set of phenotypes) (see, e.g., Cooper et al.
2003; Wray et al. 2003; Shapiro et al. 2004). In particular,
regulatory changes involving a limited genetic diversity can
affect the expression of alternatively spliced isoforms and
may modulate timing, localization, and abundance of gene
expression. These processes can be adaptive and, therefore,
responsible for organismal diversification (reviewed by Fay
and Wittkopp 2008).

To date, comparative transcriptome analyses of African
cichlids have been limited in terms of species number
and number of expressed sequence tags (ESTs) analyzed
(Salzburger et al. 2008; Kobayashi et al. 2009; Lee et al.
2010). These studies, overall, revealed a high uniformity
of the protein-coding sequences among closely related,
yet phenotypically diverse species.

Here, we report more than a million new EST sequences,
perform transcriptome analyses, and investigate the overall
expression profiles of two African cichlid species, Astatoti-
lapia burtoni (AB) and Ophthalmotilapia ventralis (OV). AB
and OV are representatives of two main evolutionary cichlid
lineages (tribes) from East Africa, the modern haplochro-
mines and the more basal group of the ectodines, respec-
tively (see, e.g., Salzburger et al. 2002, 2005). The two
lineages are thought to have diverged several millions of
years ago (Salzburger et al. 2005; Koblmuller et al.
2008). So far, comparative genetic studies between these
two lineages were largely limited to a phylogenetic context
(see, e.g., Salzburger et al. 2002, 2005; but see Salzburger
et al. 2007), whereas genomic comparisons are lacking. The
two species differ in body morphology, ecology, and behav-
ior. AB is a mouth-brooding species found in rivers and
estuaries around Lake Tanganyika and is characterized by
the presence of ‘‘true’’ circular egg-spots on the anal fins
of males. OV is also a mouth-brooding species endemic
to lake Tanganyika but exhibits long ventral fins showing
egg-dummies in form of yellow vessels at their tips. Func-
tional egg-dummies are, hence, a feature that evolved sev-
eral times during cichlid evolution in East Africa (Salzburger
et al. 2007; Salzburger 2009).

For each of these two species, more than 647,000 ESTs
were generated through 454 sequencing (Roche) and as-
sembled in more than 46,000 contigs. These represent
the first 454 data sets and the largest collection of ESTavail-
able to date for African cichlids. This study also provides the

first transcriptome data for a member of the ectodine line-
age (OV). Functional annotation and comparative analyses
were performed to explore major qualitative and quantita-
tive differences of the two transcriptomes. Furthermore,
comparative analyses were expanded to include additional
species via the identification of more than a 1,200 ortholo-
goues contigs across AB, OV, the Nile tilapia (Oreochromis
niloticus) and medaka (Oryzia latipes) as outgroup. This al-
lowed screening for differential substitution rates along lin-
eages and for individual genes. Overall, our study provides
an important molecular resource for comparative studies
within cichlids and among fishes in general and will facilitate
the assembling and annotation of the upcoming cichlid ge-
nomes (http://www.broadinstitute.org/models/tilapia).

Materials and Methods

Samples

Specimens from an inbreed laboratory strain of AB were kept
at the University of Basel (Switzerland) under standard labo-
ratory conditions. OV individuals were captured live in Mpu-
lungu (Zambia), shipped to Basel, and kept at the same
laboratory conditions for aweek. For RNA isolation, individuals
were euthanized with MS 222 using approved procedures
(permit nr. 2317 issued by the cantonal veterinary office).

cDNA Library Construction and 454 Sequencing

From AB, we extracted total RNA from ten embryos, ten fish
larvae, two juveniles, and two adults (one male and one fe-
male). From OV, we used four adults (three males and one
female). For each species, specimens were pooled together,
roughly chopped, and incubated for 2 h in 8 ml of trizol (In-
vitrogen). Samples were then ground to complete homog-
enization using a mortar and a pestel. RNA extraction was
performed according to the manufacturer’s protocol. DNase
treatment was carried out with the DNA-free Kit (Applied
Biosystems). The quantity and quality of RNA were assessed
by spectrophotometry and gel electrophoresis. One micro-
gram of RNA of each sample was sent for commercial nor-
malized library construction by Vertis Biotechnology AG
(http://www.vertis
-biotech.com/). From total RNA, first strand cDNA was syn-
thetized using a reverse transcriptase, an N6 random primer
and a small aliquot of an oligo(dT)-primer for enrichment of
3# ends. 454 adapters A and B were ligated to the 5# and 3#
ends of the cDNA. cDNAs were then amplified by polymer-
ase chain reaction (PCR) (15 cycles) using a proofreading
enzyme. Libraries were normalized by hydroxyl-apatite chro-
matography, and the single-stranded cDNA was amplified
by PCR (nine cycles). cDNA was then selected with gel frac-
tioning for fragments of sizes 500 to 700 bp.

Normalized cDNA libraries for the two species were
sequenced with a Roche Genome Sequencer FLX system
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(Roche 454) in one Titanium FLX run (two lanes, one for
each species) by Microsynth (http://www.microsynth.ch).
Base calling was performed with Phred (Ewing et al.
1998). Reads were assembled with the GS De Novo Assem-
bler version 2.0.0.22 using the default settings, a minimum
overlap of 40 nucleotides and identity threshold of 90%.

ESTs Functional Annotation

Gene ontology (GO) annotation was conducted using
Blast2GO version 2.4.4 (Conesa et al. 2005). Briefly, BlastX
searches were performed against the nonredundant data-
base (nr) using the QBlast for multiple queries, setting the
e value to 1.0 ! 10"6, the high scoring segment (HSP)
length cut off greater than 33 and the number of hits to
5. GO annotation was done using the following settings:
a pre-E-value-Hit-Filter of 1.0 ! 10"6, a GO weight of 5,
and the annotation cut off of 55. Contigs with no significant
hits to the nr data set were BlastN searched against the nu-
cleotide database (nt) for possible identification, setting the
expected cut off value to 1.0 ! 10"15.

Clustering of Orthologous Sequences

For the purpose of obtaining a data set suitable for compar-
ative analyses, we generated three data sets, which included
orthologous ESTs across AB and OV (data set #1), AB, OV, and
O. niloticus (hereafter referred to as tilapia) (data set #2), and
AB,OV, tilapia, andO. latipes (hereafter referred to asmedaka)
(data set #3). Data set #3 represented a subset of data set #2.

For the data set #1, identification of orthologous ESTs be-
tween the two species was performed using a bidirectional
best hit (BBH) method (Overbeek et al. 1999). Reciprocal
batch BlastN searches were carried out setting the expected
value cut off to 1.0! 10"50 to minimize significant matches
to paralogous sequences. Outputs were analyzed using in-
house R scripts. Hits with a bit score. 1,000 were retrieved
for further analyses. Pairwise assemblies were performed us-
ing CodonCode Aligner version 3.7.1 (Codon Code Corpo-
ration) and aligned with MAFFT version 6.821b (Katoh et al.
2002) using a local pairwise method based on the
Smith–Waterman algorithm.

For data set #2, a total of 117,222 tilapia ESTs were
downloaded from GenBank in September 2010 (Lee
et al. 2010). Among the total BBHs, we selected only anno-
tated BBHs that had a length overlap . 400 bp and a bit
score . 400. Contigs from both AB and OV belonging to
this subset were batch BlastN searched against the tilapia
data set, setting the expected value cut off value to 1.0
! 10"50. Corresponding best hits for the two species to
the tilapia data set that had a length overlap. 150 bp were
retrieved, assembled in CodonCode Aligner and aligned in
MAFFT. Alignments were trimmed for full-length overlap.

Finally, for data set #3, all contigs belonging to the data
set #2 (2,660) from AB were batch BlastX searched against
complete protein data sets from Danio rerio and medaka

(retrieved from the ENSEMBL database v59) using a cutoff
of 1.0 ! 10"50. Significant hits with concordant frames be-
tween D. rerio and medaka were chosen, and the corre-
sponding cDNA sequences from medaka were retrieved
from ENSEMBL. Clusters of orthologues cDNA sequences
across medaka and the three cichlid species were generated
and aligned using MAFFT. Danio rerio sequences were not
included due to the high nucleotide divergence of this spe-
cies with respect to the other species (Steinke et al. 2006). To
obtain only open reading frames (ORFs), untranslated re-
gions (UTRs) were trimmed from the alignments according
to the corresponding medaka proteins. All frame-shifting in-
dels introduced in Medaka sequences during the aligning
process were trimmed to preserve medaka-reading frames.
Alignments below 150 bp in length were discarded. Finally,
all alignments were eye checked and refined manually.

The final data set #3 comprised 1,216 alignments of fully
overlapping sequences starting with the correct reading
frames. The pipeline was performed with in-house R and
perl scripts.

Phylogeny, Genetic Distances, and Rates of
Evolution

Maximum likelihood (ML) heuristic searches were per-
formed on the concatenated alignment of 1,216 four-spe-
cies clusters (526,113 bp) from data set #3 using RaxML
version 7.0.4 (Stamatakis et al. 2005).We performed a rapid
bootstrap analysis and search for the best ML tree employ-
ing the GTRGAMMAmodel. Indels were identified using the
program SeqState (Muller 2005). All single and double in-
dels present in cichlid sequences in the final alignments
(36 and 5, respectively) were considered as sequencing
errors and replaced with Ns. Two deletions longer than
100 bp identified in OV were attributed to a putative exon
skipping (alternative spliced variants) and not to a genomic
deletion and also replaced with Ns. Indels were then coded
using the simple indel coding strategy (Simmons and
Ochoterena 2000), implemented in SeqState, and mapped
on theML tree performing amaximum parsimony analysis in
PAUP* v. 4.0b10 (Swofford 2000).

Uncorrected distance matrices were estimated for individ-
ual alignments using PAUP*. Pairwise synonymous and non-
synonymous substitution rates per site (Ks and Ka, dS and dN)
were estimated under two methods; the Nei and Gojobori
method (Nei and Gojobori 1986) implemented in the DNAS-
tatistics package of Bioperl (http://www.bioperl.org/wiki/
Main_Page) (Ks and Ka) and the Goldman and Yang method
(Goldman and Yang 1994) using the program Codeml imple-
mented in PAML version 4.4b (Yang 2007) (dS and dN).

Different rates of dN/dS for branches in the phylogenetic
tree were investigated using the branch models from
Codeml. dN/dS values were averaged across sites
(NSsites 5 0). Three models of molecular evolution were
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compared: 1) the one-ratio model (model5 0), allowing the
same dN/dS value for all branches; 2) the two-ratio model,
constraining the branches within the cichlid clade to one dN/
dS ratio that was different from all the others (model 5 2);
and 3) the free-ratio model (model5 1), allowing one dN/dS
ratio per each branch. Sites with ambiguous data were re-
moved (cleandata5 1). The threemodels were compared (0
vs. 2 and 2 vs. 1) using a likelihood ratio test (LRT) with two
and four degrees of freedom, respectively.

Positive selection acting on genes that showed average
Ka/Ks values higher than one between species was further
tested by estimating dN/dS for branches in individual gene
phylogeny under the free-ratio model in Codeml.

Results

ESTs Sequence Annotation and Comparative
Transcriptomics of AB and OV

The two EST libraries constructed for AB and OV yielded an
equal number of reads (;647,000), which were assembled
in a similar number of contigs (.46,000, see table 1). The
mean contig size was 585 bp for AB and 566 bp for OV, with
39% of the contigs having at least 500 bp.

Based on BlastX searches against the nr database, 19,121
AB (38.8% of the total) and 16,585 OV (35.8%) contigs had
a significant hit above the cut off e value of 10"6 (table 2).
These contigs corresponded to a total of 12,491 distinct
accession numbers (AccNos) for AB and 11,269 AccNos for
OV. Because the contigs are usually much shorter than the cor-
responding cDNA sequences, it is common that several contigs
matched to the same gene, in spite of lacking adequate overlap
to be assembled. For both species, the top-hit species for ortho-
logue match was Tetraodon nigroviridis (approximately 35%
of the contigs), followed by D. rerio (approximately 25%).

Of the contigswith significant BlastX hits, a total of 11,956
for AB and 10,250 for OVwere annotated in 4,852 GO terms
(24% of the total contigs) and 5,152 GO terms (22%), re-
spectively. The GO terms were assigned to three biological
categories that were equally represented in the two species
(table 2). Relative and absolute abundance of the most rep-
resented GO terms per biological category were also compa-
rable between AB and OV (fig. 1). The two species shared
nine of ten terms in all three categories. Themost represented
terms for the molecular function category were associated to
protein and nucleotide binding and transcription factor activ-
ity, whereas the predominant terms for the biological process
category were involved in common enzymatic processes such
as ‘‘auxin biosynthetic process,’’ ‘‘oxidation reduction,’’ and
‘‘signal transduction’’. Finally, overrepresented GO terms
for the cellular component category were mainly localized
in the nucleus and membrane.

A large part of the contigs had no significant hit to the nr
data set (above 60% for both species). These contigs were
BlastN searched against the nt database for further

identification. Only 9% of these contigs for both species
(2,863 and 2,620 contigs for AB and OV, respectively) re-
turned a significant hit to the nt database (1 ! 10"15), with
609 unique AccNos shared between the two species (see
supplementary table S1, Supplementary Material online).
Of these AccNos, several (up to 100) mapped to noncoding
regions, such asmicrosatellite sequences, pseudogenes, and
transposons. We also retrieved genes predicted to play an
important role in cichlid evolution, such as Bmp4, c-ski,
pax genes, prolactin, Sox transcription factors, the vitelloge-
nin receptor, among others. In terms of frequency of contigs
per single hit, half of the total number of contigs mapped to
the same two classes of genes in both species and with sim-
ilar relative proportions (table 3): immune genes (MHC class,
KLR, natural killer-like receptors), and patterning genes (Hox
and ParaHox genes). This suggests that both a relatively high
expression of these genes in the two species, as well as poor
amino acid conservation outside the cichlid lineage that
could explain why these contigs did not return any BlastX
hit against the nr database. To some extent, this outcome
might also be biased by the overrepresentation of these loci
in GenBank.

Comparative Transcriptomics within Cichlids

Using the BBH method, we identified 20,828 contigs that
had best reciprocal hits between AB andOV. Of these, a total
of 4,516 contigs that had a BlastN score bit # 1,000 were
selected to explore sequence diversity between the species
(data set #1). These clusters of putatively orthologous se-
quences comprised a representation of all transcript types,
such as annotated and nonannotated sequences, as well as
coding and noncoding regions (including UTRs). The aver-
age alignment length was 1,463 bp with a mean pairwise
nucleotide distance, excluding indels, of 0.0175 ± 0.0101,
and a median of 0.0158 (table 4).

Table 1
Summary of the ESTs Generated by 454 Sequencing in This Study

AB OV

Summary run

Total number of

reads

647,219 647,816

Average read

length

349.27 344.36

Total number

of bases

226,048,424 223,072,738

Summary assembly

Total number

of contigs

49,311 46,298

Total number of large

contigs (#500 bases)

19,408 17,207

Average contig size 585.84 566.33

N50 contig sizea 1,016 1,003

Largest contig size 8,335 7,430

a Half of all bases reside in contigs of this size or longer.
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Considering only annotated sequences, we generated
2,660 clusters of orthologous contigs among AB, OV and
tilapia (data set #2) that could reliably be aligned. Average
pairwise genetic distance was virtually the same between

tilapia and both AB and OV (;0.030) and more than twice
as large as between OV and AB (0.0138) (table 4). Genetic
distance between AB and OV was higher than the one cal-
culated in the previous data set, likely because this second

1432

734

544

440

366

374

293

312
324

GO:0005525 GTP binding

1631

1216

912

615

498

445

409

386

361
333 GO:0005515 protein binding

GO:0005524 ATP binding

GO:0008270 zinc ion binding

GO:0005488 binding

GO:0046872 metal ion binding

GO:0003677 DNA binding

GO:0000166 nucleotide binding

GO:0005509 calcium ion binding

GO:0003700 transcription factor activity

GO:0003676 nucleic acid binding

608

467

302

278

278
216

GO:0005634 nucleus

GO:0016021 integral to membrane

GO:0005737 cytoplasm

GO:0016020 membrane

GO:0005622 intracellular

GO:0005829 cytosol

GO:0005739 mitochondrion

GO:0005886 plasma membrane

GO:0005783 endoplasmic reticulum

GO:0005576 extracellular region

1064

1185

976

512

415

245

253

249
181 175

GO:0005840 ribosome

682

596

419

385

367

297

271

269

246
203 GO:0009851 auxin biosynthetic process

GO:0055114 oxidation reduction

GO:0007165 signal transduction

GO:0006468 protein amino acid phosphorylation

GO:0006355 regulation of transcription, DNA-dependent

GO:0006508 proteolysis

GO:0055085 transmembrane transport

GO:0045449 regulation of transcription

GO:0008152 metabolic process

GO:0006810 transport

606

523

358

359

320

262

258

213

199
201

GO:0006412 translation

A. burtoni O. ventralis

Molecular Function

Cellular Component

Biological Process

1320

1030

241

1323

1020

FIG. 1.—Ten most represented GO terms per biological category and absolute number of ESTs assigned to each term. Overall representation of GO

terms is nearly equal between AB and OV.

Table 2
Summary of the ESTs Annotation Using Blast2GO

AB OV

Number of ESTs returning BlastX hits 19,121 (12,491 AccNos) 16,582 (11,269 AccNos)

Number of ESTs with GO annotation 11,956 (5,152 terms) 10,250 (4,852 terms)

Biological process 8,438 (2,974 terms) 7,293 (2,732 terms)

Cellular component 7,330 (616 terms) 6,307 (623 terms)

Molecular function 10,110 (1,562 terms) 8,683 (1,497 terms)

Annotated protein-coding genes 8,684 7,671
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data set only included annotated sequences, thus excluding
all novel, less conserved, and untranslated mRNA sequences
(but yet including UTR regions).

We finally generated a third data set (#3) including or-
thologous sequences across the three cichlid species and
the outgroup medaka. UTRs were trimmed using medaka
proteins as reference. We obtained 1,409 clusters of fully
overlapping orthologous sequences across AB, OV, tilapia,
and medaka that included only ORFs. Inspection of the
alignments revealed 191 clusters in which premature stop
codons were present in one or more cichlid species but
not in medaka. These stop codons could represent sequenc-
ing errors or real substitutions resulting in pseudogenization

or truncation of proteins (with potential novel functions). At
this stage, we could not tease apart the three scenarios and
we therefore decided to exclude these clusters from the data
set. The final data set #3 comprised 1,216 four-species align-
ments of ORFs, with a total length of 526,113 bp. Average
length for individual alignments was 433 bp, varying be-
tween 153 and 741 bp. We used this data set for phyloge-
netic reconstructions and to investigate genetic diversity and
levels of selection for each species pairwise comparison and
along phylogenetic lineages.

The ML phylogeny based on the concatenated data set is
shown in figure 2. The tree is in accordance with previously
reported phylogenetic relationships among the four species
(Salzburger et al. 2005; Steinke et al. 2006): AB and OV
grouped together and formed a well-supported monophy-
letic group with tilapia (bootstrap values5 100 for both no-
des). The three cichlids showed similar genetic distance from
the outgroup medaka.

In accordance with the phylogenetic reconstruction, the
shortest absolute genetic distance was found between AB
and OV (0.0095), followed by tilapia versus these two spe-
cies (0.0222 and 0.0230), with the longest distance occur-
ring between medaka and the remaining three species
(0.1605 and 0.1609) (table 5). Within cichlids, contribution
of indels to the genetic diversity was low, with a total of 268
indel sites detected out of 524,047 nucleotides. These cor-
responded to a total of 38 distinct indel events equally

Table 3
Most Common Hits in the nt Database (cut off e value 1 ! 10"15) for Contigs That Had No Hits in the nr Database

Number of Contigs

Hit Description Species AccNo AB OV

MHC class IA antigen UBA1, UBA2, UAA1 genes,

UAA3 and UAA2 pseudogenes, UAA4, UAA5,

and UAA6 pseudogene fragments

Oreochromis niloticus AB270897.1 260 226

Platelet-derived growth factor receptor beta b

(pdgfrbb) and colony-stimulating factor 1 receptor b (csf1rb) genes

Astatotilapia burtoni DQ386647.1 181 153

Hoxba gene cluster A. burtoni EF594310.1 149 136

KLR1 gene; KLR2 pseudogene, KLR3 and KLR4 genes;

KLR5 gene, KLR6 and KLR7 pseudogenes

O. niloticus AY495714.1 115 115

Hoxdb gene cluster A. burtoni EF594316.1 84 59

Platelet-derived growth factor receptor beta a (pdgfrba)

and colony-stimulating factor 1 receptor a (csf1ra) genes

A. burtoni DQ386648.1 60 43

Gsh2 (gsh2), Pdgfra (pdgfra), and Kita (kita) genesKdrb (kdrb)

gene; and Clock (clock) gene

A. burtoni EF526075.2 57 64

Hoxbb gene cluster A. burtoni EF594314.1 56 74

Hoxab gene cluster, complete sequence A. burtoni EF594311.1 55 52

KLR8 pseudogene; KLR9 gene, C-type lectin (CLECT2)-like protein

pseudogene, and C-type lectin (CLECT2)-like protein gene;

KLR10 pseudogene; C-type lectin natural killer cell

receptor-like protein gene; and transposon TX1-like ORF2 pseudogene

O. niloticus AY495715.1 45 47

Hoxda gene cluster A. burtoni EF594315.1 31 32

Hoxca gene cluster A. burtoni EF594312.1 22 30

Hoxaa gene cluster A. burtoni EF594313.1 20 13

Total number of contigs 1,135 1,044

Table 4
Average Pairwise Genetic Distance (Pi, Uncorrected) with Standard

Deviation and Median Values Estimated from 4,516 BBHs between AB

and OV (Data set #1) and from 2,660 Three-Species Alignments (AB,

OV, and Tilapia; Data set #2)

Pi Median Mean Length (Range), bp

Data set #1a

AB OV 0.0175 ± 0.0101 0.0158 1,463 (516–6,837)

Data set #2

AB OV 0.0138 ± 0.0096 0.0117 541 (150–2,588)

Tilapia AB 0.0302 ± 0.0203 0.0261

Tilapia OV 0.0314 ± 0.0212 0.0268

a Data set #1 includes both annotated and nonannotated ESTs, whereas data set
#2 includes only annotated ESTs with UTRs.
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distributed along the three cichlid lineages (AB, OV, and ti-
lapia) (mapped in fig. 2). Six deletion events (3- to 6-bp de-
letions) were specific of the AB/OV clade and occurred in the
following genes: the ‘‘low choriolytic enzyme precursor,’’ in-
volved in the breakdown of the egg envelope, the ‘‘src ki-
nase-associated phosphoprotein 2,’’ involved in the src
signaling pathway, the ‘‘deoxyribonuclease tatdn3,’’ the ‘‘v-
type atpase b subunit,’’ the ‘‘dna topoisomerase 2-beta,’’
and the ‘‘probable rna-binding protein eif1ad.’’ Further inves-
tigations are needed to clarify whether these amino acid de-
letions confer important biological changes to these proteins
and are therefore involved in some cichlid-specific traits.

UTRs Contribution to Cichlid Genetic Divergence

To check for the specific contribution of UTRs to the genetic
diversity between cichlid species, pairwise genetic distances

were calculated on the same gene data set as data set #3
(thus excluding nonannotated sequences) before and after
trimming for fully coding sequences (table 6). The average
length of the 1,216 alignments among the three cichlid spe-
cies including partial or full UTRs was 536 bp, ranging be-
tween 156 and 1,746 bp, for a total of 652,849 bp.
Inclusion of UTRs was responsible for a total increase of ap-
proximately 0.002 of the genetic divergence compared with
the data set including ORFs only (table 6). This corresponds
to a relative increase of about 17%, 12.6%, and 8.7% in the
genetic divergence between AB and OV and tilapia versus
AB and OV, respectively. For the same gene data set, we also
retrieved full-length contigs from AB and OV in order to ex-
tend our analysis of UTRs to longer sequences (thus exclud-
ing tilapia which reduced the length overlap across AB and
OV in the previous data set). Average length of the 1,216
AB-OV pairwise alignments was 925 bp, nearly double

FIG. 2.—ML phylogeny based on four-species concatenated alignment of 1,216 genes (526,113 bp). The tree is rooted using medaka as outgroup.

All nodes had a 100 bootstrap value support. For each branch, individual dN and dS values (in brackets, respectively) and the corresponding dN/dS ratios
(in red) were calculated under the free-ratio model (codeml). Indel events per branch (specified by number followed by ‘‘i’’) were mapped by maximum

parsimony.

Table 5
Average Pairwise Genetic Distances (Pi, Uncorrected), Rates of Synonymous and Nonsynonymous Substitutions Per Site and Relative Ratio Estimated

for Both Individual and Concatenated 1,216 Four-Species Alignments (526,113 bp, Data set #3)

Individual Alignments Concatenated Alignments

Nei and Gojobori (1986)

Nei and Gojobori

(1986)

Goldman and Yang

(1994)

Pi Ks Ka Ka/Ks Ks Ka Ka/Ks dS dN dN/dS

AB OV 0.0095 ± 0.0072 0.0289 ± 0.0001 0.0048 ± 4.7 ! 10"06 0.1856 ± 0.2688 0.0288 0.0057 0.1979 0.0288 0.0039 0.1358

Tilapia AB 0.0222 ± 0.0207 0.0732 ± 0.0006 0.0096 ± 1 ! 10"05 0.1753 ± 0.2124 0.0685 0.0103 0.1504 0.0686 0.0091 0.1323

Tilapia OV 0.0230 ± 0.0210 0.0746 ± 0.0005 0.0102 ± 0.0000 0.1827 ± 0.2349 0.0699 0.0117 0.1674 0.0700 0.0097 0.1387

Medaka Tilapia 0.1609 ± 0.0496 0.8657 ± 0.0197 0.065 ± 0.0002 0.0810 ± 0.0977 0.8128 0.0672 0.0827 0.8160 0.0607 0.0744

Medaka AB 0.1605 ± 0.0497 0.8695 ± 0.0125 0.0644 ± 0.0002 0.0806 ± 0.1171 0.8167 0.0665 0.0814 0.8201 0.06 0.0731

Meakda OV 0.1605 ± 0.0497 0.8681 ± 0.016 0.0647 ± 0.0002 0.0810 ± 0.1062 0.8143 0.0676 0.0830 0.8182 0.0603 0.0737
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the length for the two species considering ORFs only, and
ranged between 402 and 3,669 bp, for a total of
1,122,962 bp. Average pairwise divergence between the
two species was 0.0133, corresponding to an increase of
40% of their genetic divergence with respect to alignments
including ORFs only (table 6). This last value is likely an un-
derestimate of UTR contribution to the genetic divergence
between AB and OV; indeed, in some cases, these longer
alignments also include additional coding regions that were
trimmed in data set#3 because they did not fully overlap
with tilapia sequences (which are, on average, shorter than
our AB and OV contigs).

Rates of Evolution and Signature of Disruptive
Selection in the Cichlid Lineage

We used ORFs from data set#3 to estimate rates of evolution
within cichlids (table 5). Based on themean pairwise estimates
on single alignments, the smallest average Ks valuewas found
for the AB/OV comparison (0.0289), followed by similarly low
values between tilapia and both OV and AB (0.0732 and
0.0746) and between medaka and all other species compar-
isons (0.8657–0.8695). The average Ks values calculated from
the concatenated alignment were comparable (table 5).

Within cichlids, the average pairwise Ka/Ks ratios across
the three species were also similar (0.175–0.186) but at least
two times higher than for all pairwise comparisons between
medaka and the three cichlids (0.081) (Whitney–Mann test,
P , 0.001), suggesting disruptive selection in the cichlid lin-
eage. Estimates of Ka/Ks based on average individual and
concatenated alignments using the Nei and Gojobori method
were similar and comparable to the estimates obtained using
the more sophisticated model of substitutions fromGoldman
and Yang (1994) implemented in Codeml (Yang 2007).

We further tested the hypothesis for differential selective
forces among lineages by comparing several branch models
implemented in Codeml (PAML). Among the models tested,
the free-ratio model, allowing one dN/dS for each branch,
was significantly better than both the one-ratio model,
which assigned the same dN/dS value to all branches,
and the two-ratio model, which assigned to the medaka
lineage a dN/dS value that differed from all other branches
(LRT, P , 0.001 in both comparisons). According to the

free-ratio model, the branches within the cichlid clade
evolved with at least as twice as large dN/dS (0.1269–
0.1607) compared with the branch at the base of the clade
(0.0687) (fig. 2). The branch leading to medaka also showed
a dN/dS value similar to that of cichlids; however, individual
values of dN and dS were extremely low (,10"4), impeding
a reliable estimate of the ratio.

Positively Selected Genes

We screened all individual 1,216 alignments for pairwise Ka/
Ks values higher than one and obtained a set of 33 genes
that are putatively under positive selection in at least one
pairwise comparison (table 7). Individual inspection of these
gene alignments ruled out possible misalignments or chime-
ric structures. All 33 genes showed Ka/Ks . 1 exclusively
within cichlids comparisons: 14 genes between AB and
OV, 13 between tilapia and either AB or OV, five in two
pairwises and one gene for all three-cichlids pairwise com-
parisons. No genes showed values of Ka/Ks . 1 between
medaka and any of the three cichlid species. This is compat-
ible with the lower dN/dS value assigned to the branch lead-
ing to the cichlid clade (reported above).

To further confirm these findings, all 33 individual genes
were tested for positive selection in the framework of a phy-
logeny using the branch free-ratio model in Codeml. dN/dS
was larger than one in one or more lineages in all the 33
genes, supporting the above results.

Discussion

Coverage and Functional Annotation of the Two
Transcriptomes

Our transcriptome-wide study provides the first high-
throughput 454 sequencing data available for eastern African
cichlids and the largest current EST data set for cichlids. With
nearly 647,000 reads assembled in more than 46,000 con-
tigs, this data set offers the very first extensive genetic
resource for a member of the Ectodini tribe, O. ventralis
(OV), for which current molecular data were limited to
few mitochondrial and nuclear genes only (see, e.g., Clabaut
et al. 2005; Salzburger et al. 2007; Koblmuller et al. 2008).
It also largely integrates current EST data available for A. bur-
toni (AB) (Salzburger et al. 2008). Comparative analysis of the
new EST data set generated for this species (49,311 contigs)
with the one already available in GenBank (10,312 contigs)
via BlastN searches (1! 10"50) indicates an overlap of 6,935
contigs between data sets. More than 70% of the hits
showed a sequence identity between 98% and 100%, con-
firming the quality of our EST sequences and providing a fur-
ther coverage for a subset of them. Overall, combining the
two data sets, the ESTs generated in this study contributed
to more than 70% of unique new sequences, greatly enlarg-
ing the current coverage of the transcriptome for AB.

Table 6
Average Pairwise Genetic Distances (Pi, Uncorrected) Estimated for

1,216 Individual Four-Species Alignments (Gene Data set #3) before

and after Trimming UTRs

Pi

ORFs only ORFs þ UTRsa ORFs þ UTRsb

AB OV 0.0095 ± 0.0072 0.0112 ± 0.0077 0.0133 ± 0.0080

Tilapia AB 0.0222 ± 0.0207 0.0250 ± 0.0171 na

Tilapia OV 0.0230 ± 0.0210 0.0250 ± 0.0171 na

a Total length: 652,849 bp.
b Total length: 1,122,962 bp.
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Based on comparison of the number of proteins pre-
dicted for closely related fishes with those identified in
our two EST libraries, the transcriptomes generated for
both AB and OV cover at least half of their total proteomes.
Specifically, the number of protein-coding genes ranges
from a minimum of 18,523 in the highly compact genome
of Takifugu (Aparicio et al. 2002) to up to 24,147 in D. rerio

(http://www.sanger.ac.uk/Projects/D_rerio/). Taking these
two values as a reference range for the expected number
of protein-coding genes, ESTs from AB cover between
52% and 67% of the total protein-coding genes diversity
(with 8,684 predicted proteins, see table 2), whereas ESTs
from OV cover between 47% and 61% (7,671 proteins).
It is, however, important to consider that ESTs represent, in

Table 7
Genes Under Putative Positive Selection Based on Pairwise Ka/Ks Values . 1

Pairwise Gene Length, bp Pi Ks Ka Ka/Ks

Single

AB versus OV Aquaporin fa-chip 396 0.0202 0.0103 0.0273 2.650

Succinate dehydrogenase 450 0.0178 0.0085 0.0214 2.518

20-beta-hydroxysteroid dehydrogenase 501 0.0140 0.0084 0.0159 1.893

26s proteasome nonatpase regulatory subunit 9 636 0.0173 0.0140 0.0227 1.621

Muscle-type creatine kinase ckm1 438 0.0092 0.0098 0.0151 1.541

Darmin protein 363 0.0083 0.0061 0.0090 1.475

Serine hydrolase-like protein 489 0.0226 0.0180 0.0247 1.372

Tetratricopeptide repeat protein 35 600 0.0034 0.0078 0.0107 1.372

Transmembrane protein 16f 357 0.0114 0.0120 0.0148 1.233

Dead (asp-glu-ala-asp) box polypeptide 56 537 0.0075 0.0080 0.0098 1.225

Novel protein (zgc:100919) 384 0.0131 0.0116 0.0139 1.198

loc733309 protein 363 0.0138 0.0128 0.0142 1.109

Alpha-sialyltransferase st3gal v 345 0.0116 0.0111 0.0119 1.072

Trypsinogen 2 540 0.0315 0.0311 0.0325 1.045

Tilapia versus OV Beta-galactoside-binding lectin 378 0.0212 0.0119 0.0243 2.042

Decaprenyl-diphosphate synthase subunit 2 348 0.0201 0.0120 0.0231 1.925

Elastase 2-like protein 540 0.0225 0.0152 0.0253 1.664

cdc42-interacting protein 4 homolog 306 0.0132 0.0157 0.0167 1.064

Cytochrome c oxidase subunit 4

isoform mitochondrial precursor

516 0.0177 0.0178 0.0182 1.022

Regulator of g-protein signaling 18 417 0.0240 0.0218 0.0283 1.298

Serum paraoxonase arylesterase 2 435 0.0300 0.0305 0.0336 1.102

hbaa_serqu ame: full 5 hemoglobin

subunit alpha-a ame: full 5 hemoglobin

alpha-a chain ame: full 5 alpha-a-globin

426 0.0423 0.0403 0.0445 1.104

Suppression of tumorigenicity 14 (colon epithin) 477 0.0359 0.0266 0.0400 1.504

Tilapia versus AB Signal sequence alpha 528 0.0076 0.0078 0.0126 1.615

Nadh dehydrogenase 1 alpha

subcomplex subunit mitochondrial precursor

330 0.0182 0.0135 0.0199 1.474

mgc85594 protein 402 0.0150 0.0123 0.0159 1.293

caþþ cardiac fast twitch 1 like 447 0.0201 0.0180 0.0212 1.178

Two

Tilapia versus OV Annexin a4 534 0.0356 0.0361 0.0366 1.014

Tilapia versus AB 0.0300 0.0279 0.0314 1.125

Tilapia versus OV Lipid phosphate phosphohydrolase 2 258 0.0233 0.0149 0.0268 1.799

Tilapia versus AB 0.0233 0.0149 0.0268 1.799

AB versus OV 39s ribosomal protein mitochondrial precursor 318 0.0126 0.0138 0.0165 1.196

Tilapia versus AB 0.0189 0.0138 0.0207 1.500

AB versus OV Ubiquinol-cytochrome c rieske iron-sulfur polypeptide 1 441 0.0136 0.0096 0.0150 1.563

Tilapia versus OV 0.0159 0.0096 0.0181 1.885

AB versus OV Epithelial cadherin precursor 651 0.0691 0.0671 0.0742 1.106

Tilapia versus OV 0.0799 0.0807 0.0857 1.062

Three

AB versus OV Cell cycle control protein 50a 372 0.0162 0.0109 0.0218 2.000

Tilapia versus OV 0.0431 0.0218 0.0558 2.560

Tilapia versus AB 0.0457 0.0439 0.0483 1.100

NOTE.—Of the 33 genes, 27 were found with Ka/Ks . 1 only in single cichlid pairwises, five in two pairwises, and one in all three pairwise comparisons.
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most cases, partial transcripts, with a typical 3#-UTR bias in-
troduced during the sequencing process, and thus, the actual
coverage obtained for a full proteome (total length of the
cDNA sequences transcribed) of both species is likely lower.

Comparative Transcriptomics between AB and OV

Comparative analyses of the functional annotation of more
than 10,000 ESTcontigs for both AB and OV showed highly
similar transcriptomes between the two species, in terms of
both types and relative frequencies of GO categories ex-
pressed. The ten most represented GO terms per category
were typically the same for both species, with very similar
relative and absolute frequencies (fig. 1). An analogous
comparative transcriptome analysis was recently performed
for two closely related Central America cichlids (Elmer et al.
2010) and also showed a comparable functional annotation
of their transcriptomes, with similar coverage of expressed
GO categories (both as types and frequencies) between spe-
cies. These categories are however differently represented
compared with our data set, suggesting quite divergent
transcriptome features between Central American and east-
ern African cichlids, although further analyses are needed to
explore these differences.

A large portion of the transcriptomes of AB and OV
(64 and 75% of the contigs, respectively) could not be an-
notated or had no BlastX matches to the protein nr data-
base, suggesting that these sequences might represent
novel proteins, unique to cichlids, fast evolving genes or
UTRs. Recent studies in humans indicate that large parts
of transcriptomes are indeed noncoding, although this re-
mains unclear in fishes (Cheng et al. 2005). Further identi-
fication of these contigs via BlastN searches in the nt
database provided a significant match only for 9% of these
contigs in both species, suggesting that the large majority of
these sequences (either translated or untranslated) might in-
deed be cichlid-specific, as result, for instance, of acceler-
ated sequence evolution. Among those contigs that
returned a significant match in the nt database, roughly half
of them matched to 13 unique hits (i.e., AccNos), repre-
sented solely by two gene categories, immune and pattern-
ing genes, both in AB and OV. The two species also paired in
terms of relative frequencies of these most represented con-
tigs, indicating similar high expression levels of these tran-
scripts in AB and OV. Among other hits that were less
represented in terms of number of contig per hit, several
matched to genes that are known to play a crucial role in
rapid species evolution, such as bmP4, pax6, and color
genes. Overall, this suggests that genes implied in key fea-
tures of (cichlid) species, such as body morphology, colora-
tion, development, and immunity represent a variable
portion of the cichlid transcriptome (i.e., genes under accel-
erated evolution) with respect to other species, as predicted
based on their function in processes typically under strong

natural selection. Nevertheless, these findings should be
taken with caution as we cannot exclude a bias in the type
of sequences available in the nt database for closely related
species to AB and OV, which would also bias the results of
the BlastN searches.

Genetic Diversity between AB and OV

The two new transcriptomes presented here show up to
0.0175 uncorrected genetic divergence based on .4,000
pairwise alignments of putatively orthologues ESTs identi-
fied through a best reciprocal hit approach. It should be
noted that all the alignments included both annotated
and nonannotated sequences. When only annotated se-
quences are considered (using data set #2), the genetic di-
versity drops to 0.0138 between OV and AB. Furthermore,
when only ORFs are considered (data set #3), the genetic
diversity drops to nearly half (0.0095), suggesting that non-
coding regions and nonannotated coding genes, such as pu-
tative novel or fast evolving genes, contributed to at least
half of the total transcriptome divergence. In particular,
UTR regions appear to carry a great proportion of variable
sites between the two species. Comparative analysis of the
same gene data set before and after trimming UTRs indi-
cates a 40% increase of genetic divergence between AB
and OV when UTRs are included. Similarly, an increase in
genetic divergence, although smaller (likely due to shorter
sequences), is seenwhen UTRs are included in pariwise com-
parisons between tilapia and both AB and OV.

It has been proposed that large part of the phenotypic
variation found among closely related species is associated
to changes at the regulatory regions affecting the expression
profiles (e.g., cis-regulatory elements; Fay and Wittkopp
2008). In cichlids, this scenario is mainly supported by the
indirect finding of very limited or no genetic diversity at
the protein-coding regions among phenotypically diverse
species (see Kobayashi et al. [2009] for lake Victoria species
and Elmer et al. [2010] for Central American cichlids). Direct
evidence of adaptive variation at noncoding regions comes
from recent data showing that cichlid 3#-UTRs contain tar-
get sites for fast evolving microRNA. These sites present el-
evated SNP densities in response to the rapid diversification
of these miRNA, clearly pointing to a prominent role of UTRs
in cichlid evolution (Loh et al. 2011).

In our data set, part of the observed UTR diversity might
simply result fromweaker functional constraints and therefore
be nonadaptive. Future investigations targeting, for example,
the functional role of divergent UTRs found in associationwith
highly conserved protein-coding sequences will shed light on
the contribution of UTRs in cichlids evolution.

Evolutionary Divergence and Mutational Rates
among Cichlids

In order to address more specific questions on genetic diver-
sity, substitution rates and selection within the cichlid clade,
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we expanded our comparative transcriptome analyses to in-
clude EST data publicly available for another cichlid, tilapia
(Lee et al. 2010), which is a representative of a distinct and
more ancestral cichlid lineage, as well as cDNA from
medaka, which is presently the closest fully sequenced out-
group to cichlids (Steinke et al. 2006).

We were able to generate a total of 1,216 clusters of
aligned sequences (up to 526 Kb) containing exclusively
ORFs that fully overlapped across the four species (data
set #3). The stringent criteria used for clustering, including
cut off e values for Blast searches set to 1.0 x 10"50, best
reciprocal Blast hits and removal of sequence clusters with
stop codons in cichlids (putatively pseudogenes or novel
truncated genes) likely prevented inclusion of paralogous
sequences, providing a reliable data set for molecular evo-
lution analyses. Nevertheless, inference of orthology should
be taken with caution as transcriptomes are partial and
might not represent all sequences belonging to a gene fam-
ily, causing reciprocal best BlastN hits between paralogous
sequences. Although we can largely exclude clustering of
cichlid paralogous sequences that are members of old gene
families (formed before the cichlid radiation), we cannot rule
out clustering of sequences derived from more recent line-
age-specific duplications for which only one copy was pres-
ent in individual species data sets.

Within cichlids, the nucleotide diversity Pi, Ka, and Ks be-
tween tilapia and both OV and AB was approximately the
same but more than 2-fold higher than between OV and
AB (table 5). This is also confirmed by the ML phylogeny re-
constructed based on the concatenated data set, which
shows equal branch length between tilapia and both AB
and OV. Nucleotide diversity estimates based on nuclear
data are available for other cichlids, too, albeit based on
much smaller samples of orthologous genes. Specifically, ge-
netic distances are reported for three members of the Lake
Victoria region superflock, which range between 0.00339
and 0.00346 based on 68 genes (Kobayashi et al. 2009).
An average genetic distance of 0.0026was detected among
five Malawi species, based on partial genomic data with low
coverage (Loh et al. 2008).

Assuming a divergence time between tilapia and the re-
maining cichlids of 10.51 to 29.43 Ma (average of 19.44
Ma; Matschiner et al. 2011) and using the neutral Ks diver-
gence estimated on the concatenated alignment by Codeml
(accounting for transition/transversion rates and base-fre-
quency dependency), we calculated a mutation rate ranging
from 1.2 to 3.3 ! 10"9 substitutions per silent site per year
(average of 1.8 ! 10"9 substitutions per silent site per year)
for both comparisons of tilapia to OV and AB. This muta-
tional rate is in accordance to the average mammalian ge-
nome mutation rate of 2.2 ! 10"9 per base pair per year
(Kumar and Subramanian 2002), but it could represent
an underestimate because we did not correct for multiple
hits. Using the linear equations of time versus Ks given by

tilapia comparisons to AB and OVand considering a Ks value
between AB and OV of 0.0288 (table 5), we estimated a di-
vergence time for the AB-OV split of between 4.4 and 12Ma
(average of 8 Ma). This dating roughly coincides with the
onset of truly lacustrine conditions in Lake Tanganyika
(ca. 6 Ma), which is when the primary lacustrine radiation
of cichlids is thought to have started and the main cichlid
lineages, including the haplochromines and ectodines,
emerged (see, e.g., Salzburger et al. 2002; Koblmuller
et al. 2008).

Signature of Positive Selection in the Cichlid
Lineage

Ka/Ks values estimated for all cichlid pairwise comparisons
were at least two times greater (0.175–0.186) than those
calculated between medaka and the three cichlids, which
were nearly the same (0.081). This argues for homogeneous
substitution rates within cichlids, independent of genetic
divergence.

Looking at substitution rates in the framework of a phy-
logeny, dN/dS values per branch estimated under the best
branch model (i.e., free-ratio model) confirmed a higher
dN/dS for branches within the cichlid clade with respect
to the outgroupmedaka. This is largely concordant with pre-
vious findings for closely related Malawi cichlids, where
cichlids showed a much higher Ka/Ks (up to five times) than
the one estimated betweenmore distant outgroups (such as
between Fugu and Tetraodon or among Danio strains) (Loh
et al. 2008). Taken as a whole, these studies provide good
evidence for a relatively higher rate of fixation of nonsynon-
ymous substitutions in cichlids, likely driven by disruptive se-
lection. Alternatively, such elevated Ka/Ks might result, in
part, from a relaxed purifying selection, due for instance
to smaller effective population size of the cichlid ancestor.

Within our data set, we also specifically identified a set of
33 genes putatively under positive selection that represent
potential candidates for a more thoroughly experimental
and computational investigation. We note that the data
set used for our estimates derived from randomly pooled
ESTs that contained an ORF and showed a good level of
amino acid conservation to return a significant BlastX hits
to the medaka proteome, thus we do not expect any par-
ticular bias in the gene pooling. Nevertheless, these esti-
mates should be taken with caution, as other types of
biases should be considered. First, this data set comprises
relatively short alignments of partial ORFs (mean was 433
bp), mostly due to a 3#-UTR bias introduced during the
EST sequencing process. This decreases the power for
testing positive selection in individual genes. Moreover,
the cichlid radiation occurred in a very short evolutionary
time frame and deleterious nonsynonymous mutations
might not yet have been removed, which could affect
proper estimates of Ka/Ks (Rocha et al. 2006; Wolf et al.
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2009). Finally, 454 sequencing is known to have a high sin-
gle read accuracy of. 99.5%, whereas the consensus read
accuracy within an assembly with a coverage .20x is
.99.99%. Nonetheless, even considering slightly higher er-
ror rates, we do not expect any systematic bias in the sub-
stitutions pattern that could have specifically affected the
nonsynonymous rates.

Conclusions
Using the new 454 pyro-sequencing technology, we have
provided the so far largest collection of new ESTs for cichlid
species. Our functional annotation and expanded compara-
tive transcriptome analysis, including a third cichlid lineage
(tilapia) and the outgroup medaka, have shown a signature
of disruptive selection in the cichlid lineage and pointed to
a prominent contribution of UTRs in cichlid genetic diversity,
potentially involved in regulatory changes of the expression
profiles underlying their large phenotypic diversity. The
new transcriptomes provide an important reference to
now target more specific transcriptome-to-phenome com-
parative analyses aimed to investigate, for instance, the mo-
lecular bases of single and multiple traits diversity in more
closely related species or shared traits among more distantly
related species. Genome sequencing projects are currently
ongoing for tilapia and four other cichlid species, including
AB, Metraclinia (Maylandia) zebra, Pundamilia nyererei,
and Neolamprologus brichardi (http://cichlid.umd.edu/
CGCindex.html). Together with these, the partial genomic
data and the EST resource already existing for cichlids and
close outgroups, the transcriptome data sets reported here
will provide the scientific community with a valuable resource
for comparative analyses of both genetic and expression pro-
files within cichlids and among closely related species that will
address crucial questions on the molecular bases of adaptive
radiation and explosive speciation.

Supplementary Material
Supplementary table S1 is available at Genome Biology and
Evolution online (http://www.gbe.oxfordjournals.org/).
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