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The evolution of cichlid fish egg-spots
is linked with a cis-regulatory change

M. Emilia Santos"", Ingo Braasch?, Nicolas Boileau!, Britta S. Meyer!, Loic Sauteur3, Astrid Bshne!,
Heinz-Georg Belting3, Markus Affolter3 & Walter Salzburger!

The origin of novel phenotypic characters is a key component in organismal diversification;
yet, the mechanisms underlying the emergence of such evolutionary novelties are largely
unknown. Here we examine the origin of egg-spots, an evolutionary innovation of the most
species-rich group of cichlids, the haplochromines, where these conspicuous male fin colour
markings are involved in mating. Applying a combination of RNAseq, comparative genomics
and functional experiments, we identify two novel pigmentation genes, fhl2a and fhi2b,
and show that especially the more rapidly evolving b-paralog is associated with egg-spot
formation. We further find that egg-spot bearing haplochromines, but not other cichlids,
feature a transposable element in the cis-regulatory region of fhi2b. Using transgenic
zebrafish, we finally demonstrate that this region shows specific enhancer activities in
iridophores, a type of pigment cells found in egg-spots, suggesting that a cis-regulatory
change is causally linked to the gain of expression in egg-spot bearing haplochromines.
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a challenge to evolutionary biology'™. While selection

explains adaptation and speciation in an adequate
manner®, it is more difficult to conceive how selection would
trigger the origin of evolutionary novelties such as insect wings,
feathers, tetrapod limbs, flowers, the mammalian placenta, beetle
horns or butterfly eye-spots?*>78.  The emergence of
evolutionary innovations, that is, lineage-restricted traits linked
to qualitatively new functions, involves the origin of new
developmental modules that are responsible for the identity of
these novel characters®>. Most of the available evidence suggests
that new developmental programs emerge largely through co-
option of pre-existing regulatory gene networks via changes in
their regulation and deployment (‘old genes playing new tricks’).
Uncovering the mechanisms of how these developmental
modules are co-opted or newly evolved is one of the primary
goals of evo-devo research>*>78,

Anal fin egg-spots are an evolutionary innovation in the
so-called ‘haplochromines™ (Fig. 1a and Supplementary Fig. 1),
the most species-rich group of cichlid fishes, best known for
their spectacular adaptive radiations in the East African lakes
Victoria and Malawi'®!!. Adult males of ~ 1,500 cichlid species
feature this pigmentation trait in the form of conspicuously
coloured circular markings®!!2, Haplochromine egg-spots vary
substantially in colour, shape, number and arrangement between
species (Fig. 1b), and even within species a certain degree of
variation is observed. In some species, also females show egg-
spots, which are then much less pronounced and colourful. The
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function of egg-spots has been implicated with the matin,
behaviour of the female-mouthbrooding haplochromines!?!>.
Immediately upon spawning, a haplochromine female gathers up
her eggs into the mouth; the male then presents his egg-spots to
which the female responds by snatching and bringing her mouth
close to the male’s genital opening; upon discharging sperm, the
eggs become fertilized inside the female’s mouth (Fig. 1c). The
mother subsequently broods and carries her progeny in the oral
cavities for several weeks after fertilization.

Here we are interested in the molecular basis of the anal fin
egg-spots of haplochromine cichlids. The main advantages of the
cichlid egg-spot system are that (i) the evolutionary innovation of
interest emerged just a few million years ago and hence is recent
compared with most other evolutionary novelties studied so
far®!%14; (ii) the phylogenetic context in which the novel trait
evolved is known and living sister clades to the lineage featuring
the novelty still exist™>16; and (iii) the genomes of two outgroup
species lacking the trait and of three derived species featuring the
trait are available. This allows us to study early events involved in
the origin of an evolutionary innovation in an assemblage of
phenotypically diverse, yet closely related and genetically similar
species'®. Using RNAseq, we identify two novel candidate
pigmentation genes, the a- and b-paralogs of the four and a
half LIM domain protein 2 (fhl2) gene, and show that both genes,
but especially the more rapidly evolving b-copy, are associated
with the formation of egg-spots. We then find that egg-spot
bearing haplochromines—but not an egg-spot-less ancestral
haplochromine and not the representatives from more basal
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Figure 1| The egg-spots of haplochromine cichlids. (a) Phylogeny of the East African cichlid fishes based on a new multimarker data set. The
haplochromines are the most species-rich and derived group of cichlids in East Africa. One of the common features of haplochromines is the presence

of egg-spots on the anal fin of males. Note that one of the ancestral lineages, represented here by P. philander, does not show this characteristic trai

1933,

Substr-br, substrate brooders; mouthbr, mouthbrooders; spp.: species. (b) Examples of male anal fin patterns in East African cichlids. Haplochromine
egg-spots (upper panel) vary in size, shape, number and colouration. Non-haplochromines and basal haplochromine P. philander (lower panel) do not show

this trait. (¢) A typical mating cycle of haplochromine cichlids.
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cichlid lineages—exhibit a transposable element insertion cytoskeleton, in cell adhesion, cell motility and signal
in close proximity to the transcription initiation site of fhl2b. transduction; furthermore, it regulates the development of
A functional assay with transgenic zebrafish reveals that heart, bone and musculature in vertebrates?%!.

only a haplochromine-derived genetic construct featuring the
SINE (short interspersed repetitive element) insertion drove
expression in a special type of pigment cells, iridophores.
Together, our data suggest that a cis-regulatory change
(probably in the form of a SINE insertion) is responsible for
the gain of expression of fhi2b in iridophores, contributing to the
evolution of egg-spots in haplochromine cichlids.

Expression of fhi2a and fhi2b is egg-spot specific. To confirm
the results obtained by RNAseq, we performed quantitative real-
time PCR (qPCR) experiments (Fig. 2a), this time also comparing
egg-spot versus non-egg-spot tissue within male anal fins. In
addition, we tested another haplochromine species, Cynotilapia
pulpican, with a different egg-spot arrangement to exclude posi-
tional effects of gene expression on the anal fin. In both species,
Results the two duplicates of fhl2 were overexpressed in egg-spots (A.
fhi2 paralogs: novel candidates for egg-spot morphogenesis. As  burtoni: fhl2a: t; =10.77, P =0.0001; fhi2b: t; = 4.362, P=0.0073;
a first step, we performed an Illumina-based comparative tran- C. pulpican: fhl2a: t,=5.031, P=0.0073; fhi2b: t,=9.154,
scriptomic  experiment (RNAseq) between male (with P =0.0008). We then tested the expression of both fhi2 paralogs
egg-spots) and female (without egg-spots) anal fins in the in the four main developmental stages of egg-spot formation in A.
haplochromine cichlid Astatotilapia burtoni. Two of the most burtoni** and compared it with other candidate pigmentation
differentially expressed genes according to RNAseq were the a- genes (including the previously identified xanthophore marker
and b-paralogs of fhi2 (~4 log,-fold and ~5 log,-fold differ-  csfIra, the melanophore marker mitfa and the iridophore marker
ences, respectively; see Supplementary Table 2). These paralogs pnp4a). We found that the expression of both fhl2 paralogs
result from the teleost genome duplication!” (Supplementary increases substantially throughout anal fin and egg-spot
Fig. 2). The four and a half LIM domain protein 2 (Fhl2) is development, and both genes showed higher expression levels
known as a transcriptional co-activator of the androgen receptor ~compared with the other pigmentation genes (Fig. 2b); fhi2b
and the Wnt-signalling pathway'®!%; FhI2 plays a role in cell-fate  shows the highest increase in expression exactly when egg-spots
determination and pattern formation, in the organization of the begin to form. Furthermore, we corroborate that the expression
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Figure 2 | The role of fhi2a and fhi2b in egg-spot formation. (a) gPCR experiments reveal that both genes are overexpressed in egg-spot compared with
adjacent anal fin tissue in the haplochromine cichlids A. burtoni and C. pulpican (**P<0.01; ***P<0.001; RQ, relative quantity). Images of male fishes of the
two species, their anal fins and a scheme showing the distribution of egg-spots are provided. (b) Expression profiles of fhl2a and fhi2b during the
ontogenetic development of egg-spots in A. burtoni (note that egg-spots are absent in juveniles and only form when males become sexually mature; see ref.
22 for further details). The values on the x axis represent fish standard length in millimetres (three replicates per developmental stage were used). The
error bars represent the s.e.m. fhi2b shows the largest increase in expression overall and its expression profile mimics the formation of egg-spots. Three
other pigmentation genes (pnp4a, csflra and mitfa) were included for comparative reasons. csflra and mitfa show a much smaller increase in gene
expression during egg-spot development than fhl2a and especially fhi2b, while pnp4a shows a constant increase in gene expression throughout the
development of egg-spots. (€) RNA in situ hybridization experiments revealed that both fhi2 paralogs (results only shown for fhi2b) are primarily expressed
in the colourful inner circle of haplochromine egg-spots (defined by the solid line) and not in the transparent outer ring (defined by the dashed line).
Expression was also observed in the proximal fin region, which also contains pigment cells. Panel 2 is a close-up from the region defined by the square
in panel 1.
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domain of both fhl2a and fhi2b matches the conspicuously
coloured inner circle of egg-spots with RNA in situ hybridization
(see Fig. 2¢ for results on fhi2b).

fhi2a and fhi2b evolved under purifying selection. In general,
phenotypic differences can arise via mutations affecting the
function of proteins or via changes in gene regulation®. Therefore,
we examined coding sequence evolution in the two fhl2 paralogs
to test for positive selection and potential change of function in a
phylogenetically representative set of 26 East African cichlids. We
found that the two fhi2 genes are highly conserved in cichlids,
with few amino-acid differences between species and an average
genetic divergence (0.4% in fhl2a and 0.7% in fhi2b) that lies
below the transcriptome-wide average of 0.95% (ref. 23). None of
the observed amino-acid changes was correlated with the egg-
spot phenotype (Supplementary Table 7).

Greater functional specialization of fhi2b in haplochromines.
Usually, after a gene duplication event, the duplicates go through
a period of relaxed selection, during which one of the two copies
can diversify and acquire new functions’, We found that the
b-copy of fhi2 shows an elevated rate of molecular evolution
compared with its paralog (fhi2a), which more closely resembles
the ancestral sequence (Fig. 3a). An additional series of qPCR
experiments in 12 tissues revealed that, in cichlids, fhl2a is
primarily expressed in heart, bony structures and muscles,
whereas fhi2b is highly expressed in the eye, and further in skin
and the egg-spots of haplochromines (Fig. 3b,c). This is different
to the gene expression profiles in medaka, where both duplicates
are highly expressed in heart, skin and eye tissues; and in
zebrafish, where the two paralogs are primarily expressed in
heart, eye and (pharyngeal) jaw tissues, with fhi2a showing rather
low levels of gene expression (Supplementary Figs 3 and 4). When
compared with the other teleost fishes examined here, our results
suggest that the haplochromine fhl2a retained most of the
previously described functions, whereas the more rapidly evolving
fhI2b obtained new expression patterns. Together, the gene
expression profile and the pattern of sequence evolution make
fhI2b a prime candidate gene for the morphogenesis of
haplochromine egg-spots.

fhiI2b shows an AFC-SINE insertion in species with egg-spot.
Since there were no changes in the coding regions of fhi2a and
fhi2b that are specific to the egg-spot bearing haplochromines, we
shifted our focus towards the analysis of putative regulatory ele-
ments, exploring the recently available genomes of five East
African cichlids (including the egg-spot bearing haplochromines
A. burtoni, Pu. nyererei, Metriaclima zebra and the egg-spot-less
non-haplochromines Neolamprologus brichardi and Oreochromis
niloticus). The non-coding region of fhi2a shows homology with
other teleosts (Oryzias latipes, Takifugu rubripes, Tetraodon
nigroviridis and Gasterosteus aculeatus) and we identified four
conserved non-coding elements (CNEs) in all species examined
(Supplementary Fig. 5a). These CNEs might thus represent
conserved regulatory regions responsible for ancestral conserved
functions of fhi2a in teleosts. We might be missing cichlid-specific
regulatory regions in important upstream regions although, as
our capacity to detect lineage-specific enhancers is limited owing
to the small sample size for each lineage and the high background
conservation level present in cichlids.

Concerning fhi2b, we did not find any CNE that is shared by
cichlids and other teleosts (Supplementary Fig. 5b). Strikingly,
however, we found a major difference that is shared by the three
egg-spot bearing haplochromines: the presence of a transposable
element upstream of fhi2b. Specifically, we identified a SINE

4

belonging to the cichlid-specific AFC-SINEs (African cichlid
family of SINEs?®), which inserted ~ 800-bp upstream of the
transcriptional start site of fhl2b (Supplementary Fig. 6). To
confirm that this insertion is associated with the egg-spot
phenotype, we sequenced the upstream region of fhi2b in 19
cichlid species. The insertion was indeed present in nine
additional, egg-spot bearing haplochromine species, yet absent
in all 10 non-haplochromines examined (Supplementary
Table 8). Importantly, we found that one haplochromine
species lacks the AFC-SINE element, namely P. philander. This
species belongs to one of the basal lineage of haplochromines
(Fig. 1a), which is characterized by the absence of egg-spots
(Fig. 1b). This suggests that the AFC-SINE upstream of fhi2b is
not characteristic to the entire haplochromine clade, but to those
that feature egg-spots, thus linking the SINE insertion to the
origin of this evolutionary innovation.

Haplochromine fhi2b regulatory region drives iridophore
expression. A long-standing hypothesis proposes that ubiquitous
genomic repeat elements are potential regulators of transcription,
and could thereby generate evolutionary variations and novel-
ties?®?7. SINEs are known for their capability of ‘transcriptional
rewiring’, that is, to change the expression patterns of genes by
bringing along new regulatory sequences when inserted in close
proximity to a gene’s transcriptional initiation site”-8, In order to
test whether the insertion of an AFC-SINE close to fhi2b
functions as an enhancer of gene expression, we aimed for a
functional experiment. We were particularly interested to find out
whether there were changes in enhancer activity between AFC-
SINE-positive haplochromines and other cichlids lacking both the
insertion and the egg-spot phenotype. To this end, we designed
reporter constructs containing the upstream region of fhi2b
(~2kb upstream to intron 1) of three cichlid species linked to the
coding region of green fluorescent protein (GFP), and injected
these constructs into zebrafish (Danio rerio) embryos to generate
transgenic lines. We switched to the zebrafish system here, as no
functioning transgenesis was available for haplochromine cichlids
at the time the study was performed (owing to the small number
of eggs per clutch associated with the characteristic female-
mouthbrooding behaviour). The three constructs were derived
from A. burtoni (haplochromine with egg-spots, AFC-SINE™),
P. philander (haplochromine without egg-spots, AFC-SINE ™)
and N. sexfasciatus (lamprologine, AFC-SINE ™), respectively
(Fig. 4a).

We were able to produce stable transgenic zebrafish lines for
each of the three constructs to examine the expression of GFP.
Importantly, we found striking differences in expression between
the A. burtoni construct and the two constructs lacking the AFC-
SINE. Of the three reporter lines, only the AFC-SINE™ showed
GFP expression in iridophores, a silvery-reflective type of
pigment cells (Fig. 4b,c and Supplementary Fig. 7). This
experiment demonstrates the presence of novel enhancer
activities in the regulatory region of fhl2b in derived haplochro-
mines and strongly suggests that these came along with the SINE
insertion.

Iridophores and egg-spot development. The egg-spot phenotype
has previously been associated with pigment cells containing
pteridines (xanthophores)!®?2, whereas our new results indicate
an auxiliary role of iridophores in egg-spot formation. We thus
re-evaluated the adult egg-spot phenotype by removing the
pteridine pigments of the xanthophores (Fig. 4e). We indeed
found that A. burtoni egg-spots show a high density of
iridophores, which is further corroborated by the increase in
gene expression of the iridophore marker pnp4a during egg-spot
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Figure 3 | Gene tree of the two fhi2 paralogs and expression profiling in East African cichlid fishes. (a) Bayesian inference phylogeny of the orthology
and paralogy relationships between cichlids, other teleosts (O. latipes, D. rerio, Ta. rubripes and G. aculeatus) and tetrapods (Anolis carolinensis and

Mus musculus) fhi2 sequences. This gene tree is important for generating functional hypotheses about both duplicates, and to infer the ancestral state of the
fhi2 gene before duplication. Our phylogeny indicates that fhl2a is more similar to the ancestral state, while fhi2b is apparently evolving faster in teleosts.
Values at the tree nodes represent posterior probabilities. In Supplementary Fig. 2, we present a synteny analysis supporting the origin of teleost fhi2
duplicates in the teleost genome duplication. (b) Relative quantity (RQ) of fhl2a and fhi2b gene expression in 12 tissues (three replicates per tissue) in C.
pulpican, an egg-spot bearing haplochromine from Lake Malawi. The error bars represent the s.e.m. (¢) RQ of fhl2a and fhi2b gene expression in 12 tissues in
N. crassus, a substrate spawning lamprologine that has no egg-spots. In both species, gill tissue was used as reference; in N. crassus, 'egg-spots’ corresponds
to the fin region where haplochromines would show the egg-spot trait. In C. pulpican (b), fhl2a is highly expressed in heart, in pigmented tissues (eye, skin
and egg-spot) and in craniofacial traits (oral jaw and lower pharyngeal jaw); fhi2b is mainly expressed in the pigmented tissues. N. crassus (€) shows

a similar expression patterns for fhi2a and fhi2b, with the difference that fhi2a does not show high expression levels in jaw tissues, and fhi2b is not
highly expressed in skin and fin tissue. These results suggest that fhi2b shows a higher functional specialization, and that it might be involved in the
morphogenesis of sexually dimorphic traits such as pigmented traits including egg-spots. LPJ, lower pharyngeal jaw bone.
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Figure 4 | The molecular basis of egg-spot formation. (a) The egg-spot bearing haplochromines feature an AFC-SINE insertion in close proximity to the
transcriptional start site of fhi2b, which is absent in the ancestral and egg-spot-less genus Pseudocrenilabrus and in all non-haplochromines. The sequences
from the three species shown here were the ones used to engineer the reporter constructs, where the fhi2b coding sequence was substituted by GFP.
(b) In transgenic zebrafish, only the AFC-SINE T construct showed GFP expression in the iridophores, a type of pigment cells (one of them is indicated by a
yellow arrow). The upper panel depicts bright-field images of 3-day-old zebrafish embryo trunks; the lower panel shows the respective embryos under
ultraviolet light. The green signal in the AFC-SINE negative N. sexfasciatus line (marked with an asterisk) is auto-fluorescence from the yolk extension.
(c) Higher magnification image from A. burtoni AFC-SINE ™ reporter construct driving GFP expression in the iridophores. Orientation in b,c: bottom:
anterior, top: posterior. (d) Top-down view of a trunk of a 3-day-old AFC-SINE-positive zebrafish embryo. The left panel depicts a bright-field image where
the iridophores of the dorsal stripe are illuminated by the incident light (yellow arrows). The right panel depicts GFP expression of the same embryo. The
GFP signal co-localizes with iridophores. (e) Cellular basis of egg-spots: this series of images shows that egg-spots are made up of xanthophores,
iridophores and scattered melanophores. Image 1 shows an A. burtoni fin with two egg-spots. Image 2 shows the same fin without pteridine pigments
(xanthophores are not visible anymore). Images 3 and 4 are higher magnification images of the egg-spots without pteridine under slightly different light
conditions confirming that egg-spots have a high density of iridophores (examples of this cell type are highlighted with arrows). UTR, untranslated region.

formation (Fig. 2b). With the exception of the proximal region of RNA in situ hybridization (see Fig. 2c for fhi2b), once more
the anal fin, the number of iridophores is greatly reduced in the linking fhl2 expression with iridophores (and less so with
fin tissue surrounding egg-spots (Supplementary Fig. 8a). xanthophores, which are very rare in this region). In the non-
Interestingly, this proximal region is the only area of the anal haplochromine N. crassus, which features a yellow anal fin
fin besides the egg-spots where we observed fhi2 expression with  pattern containing xanthophores, we did not find iridophores in
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the xanthophore-rich region (Supplementary Fig. 9), suggesting
that the xanthophore/iridophore pattern is unique to
haplochromine egg-spots. Importantly, we also observed that
iridophores appear early in the newly forming egg-spot of
haplochromines, that is, before the first xanthophores start to
aggregate (Supplementary Fig. 8b).

In zebrafish, stripe development is initiated by iridophores,
which serve as morphological landmarks for stripe orientation in
that they attract further pigment cells such as xanthophores by
expressing the csfl ligand gene?®3°. Interestingly, it has previously
been shown that a gene encoding a Csfl receptor known for its
role in xanthophore development in zebrafish, csflra, is expressed
in haplochromine egg-spots'®. We thus examined the expression
of the ligand csflb and show that its relative level of gene
expression doubles during egg-spot development, and that this
increase coincides with the emergence of the phenotype
(Supplementary Fig. 10). This leads us to suggest that a similar
pigment cell type interaction mechanism might be involved in
egg-spot patterning as the one described for zebrafish?®0, The
specific mode of action of fin patterning in haplochromine
cichlids, and how FhI2b interacts with the Csfl/Csflr system,
remains to be studied in the future.

Contribution of fhl2a in egg-spot formation. The role of the
more conserved and functionally constrained a-paralog of fhl2 in
egg-spot development cannot be dismissed. Its temporally shifted
increase in gene expression compared with fhl2b (Fig. 2b) suggests
that fhl2a most likely acts as a more downstream factor involved
in pigment pattern formation. We were nevertheless interested in
uncovering the regulatory region responsive for this expression
pattern. The first intron of fhi2a shows two CNEs that are
common across percomorph fish (Supplementary Fig. 5).
Using the same strategy as described above, we generated a
transgenic zebrafish line containing exon 1 and intron 1 of
A. burtoni linked to GFP. This construct drove expression in heart
in zebrafish embryos, which is consistent with the reported
function of fhi2a in tetrapods®, whereas there was no indication
of a pigment cell related function for this reporter construct
(Supplementary Fig. 7e). An alignment between the genomic
regions of the two fhi2 paralogs shows that there were no CNEs in
common and generally very little homology between them,
suggesting that the regulation of the expression of fhl2a in egg-
spots might proceed in a different way (Supplementary Fig. 11).

Discussion

In this study, we were interested in the genetic and developmental
basis of egg-spots, an evolutionary innovation of the most
species-rich group of cichlids, the haplochromines, where these
conspicuous colour markings on the anal fins of males play an
important role in mating!!~1® (Fig. 1).

We first performed a comparative RNAseq experiment that led
to the identification of two novel candidate pigmentation genes,
the a- and b-paralogs of the four and a half LIM domain protein 2
(fhi2) gene. We then confirmed, with qPCR and RNA in situ
hybridization, that the expression domain of both duplicates
indeed matches the conspicuously coloured inner circle of egg-
spots (Fig. 2). Especially the more rapidly evolving b-copy of fhi2
emerged as strong candidate gene for egg-spot development, as its
expression profile mimics the formation of egg-spots (Figs 2b and
3). Interestingly, we found that the egg-spot bearing haplochro-
mines, but not other cichlids, feature a transposable element in
the cis-regulatory region of fhi2b. Finally, making use of
transgenic zebrafish, we could show that a cis-regulatory change
in fhi2b in the ancestor of the egg-spot bearing haplochromine
cichlids (most likely in the form of the AFC-SINE insertion)

resulted in a gain of expression in iridophores, a special type of
pigment cells found in egg-spots (Fig. 4). This in turn might have
led to changes in iridophore cell behaviour and to novel
interactions with pigmentation genes (csf1b, csflra and pnp4a),
thereby contributing to the formation of egg-spots on male anal
fins. The specific mode of action of the SINE insertion, and how
the fhi2b locus interacts with these other pigmentation genes
remains elusive at present. Addressing these questions would
require functional studies in haplochromines, which are, however,
hampered by the specific mechanisms involved in the trait
complex of interest (mouthbrooding makes it notoriously difficult
to obtain enough eggs—in a controlled manner—to make such
experiments feasible).

Our results are also suggestive of an important role of the
a-copy of fhi2 in cichlid evolution. With our gPCR experiments,
we provide strong evidence that fhl2a is involved in jaw tissue in
zebrafish (Supplementary Fig. 3) and, importantly, in the
pharyngeal jaw apparatus of cichlids (Fig. 3b,c), another putative
evolutionary innovation of this group. The pharyngeal jaw
apparatus is a second set of jaws in the pharynx of cichlids that
is functionally decoupled from the oral jaws and primarily used to
process food'!1215. Interestingly, fhi2a has previously been
implicated in the evolution of fleshy lips in cichlids®!, which is
yet another ecologically relevant trait. From a developmental
perspective, the main tissues underlying these traits—the cranio-
facial cartilage (the jaw apparatus) and pigment cells (egg-
spots)—have the same origin, the neural crest, which itself is
considered an evolutionary key innovation of vertebrates®?. It
thus seems that the function of fhi2 in cichlids may have been
split into (a) an ecologically important, that is, naturally selected,
scope of duties, and (b) a role in colouration and pigmentation
more likely to be targeted by sexual selection.

Taken together, our study permits us to propose the following
hypothesis for the origin of cichlid egg-spots: In one of the early,
already female-mouthbrooding, haplochromines the insertion of
a transposable element of the AFC-SINE family in the cis-
regulatory region of fhl2b, and its associated recruitment to the
iridophore pigment cell pathway, mediated the evolution of egg-
spots on the anal fins—possibly from the so-called perfleckmuster
common to many cichlids'®. The conspicuous anal fin spots were
fancied by haplochromine females, which—just like many other
cichlids and also the ancestral and egg-spot-less haplochromine
genus Pseudocrenilabrus—have an innate bias for yellow/orange/
red spots that resemble carotenoid-rich prey items3, leading to
the fixation of the novel trait. In today’s haplochromines, egg-
spots seem to have a much broader range of functions related to
sexual selection®*,

Most of the currently studied evolutionary innovations
comprise relatively ancient traits (for example, flowers, feathers,
tetrapod limb, insect wings and mammalian placenta), thereby
making it difficult to scrutinize their genetic and developmental
basis. Here we explored a recently evolved novelty, the anal fin
egg-spots of male haplochromine cichlids. We uncovered a
regulatory change in close proximity to the transcriptional start
site of a novel iridophore gene that likely contributes to the
molecular basis of the origin of egg-spots in the most rapidly
diversifying clade of vertebrates. This, once more, illustrates the
importance of changes in cis-regulatory regions in morphological
evolution?.

Methods

Samples. Laboratory strains of A. burtoni, C. pulpican, Astatoreochromis alluaudi,
Pu. nyererei, Labidochromis caeruleus, Pseudotropheus elegans and N. crassus were
kept at the University of Basel (Switzerland) under standard conditions (12 h light/
12 h dark; 26 °C, pH 7). Before dissection, all specimens were euthanized with MS
222 (Sigma-Aldrich, USA) following an approved procedure (permit no. 2317
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issued by the cantonal veterinary office Basel). Individuals of all other specimens
were collected in the southern region of Lake Tanganyika (Zambia) under the
permission of the Lake Tanganyika Unit, Department of Fisheries, Republic of
Zambia, and processed in the field following our standard operating procedure!®.
Tissues for RNA extraction were stored in RNAlater (Ambion, USA), and tissues
for genomic DNA extraction were stored in ethanol and shipped to the University
of Basel.

RNA and DNA extractions. Isolation of RNA was performed according to the
TRIzol protocol (Invitrogen, USA) after incubating the dissected tissues in 750 pl of
TRIzol at 4 °C overnight or, alternatively, for 8-16h (in order to increase the RNA
yield after long-term storage). The tissues were then homogenized with a Bead-
Beater (FastPrep-24; MP Biomedicals, France). Subsequent DNase treatment was
performed with DNA-Free kit (Ambion). RNA quantity and quality was deter-
mined with a NanoDrop 1000 spectrophotometer (Thermo Scientific, USA). cDNA
was produced using the High Capacity RNA-to-cDNA kit (Applied Biosystems,
USA). Genomic DNA was extracted using a high salt extraction method (modified
from ref. 35).

Phylogenetic analyses. DNA extraction of 18 specimens of East African cichlid
fishes was conducted as described above. For the amplification of nine nuclear
markers (rag, gapdhs, s7, bmp4, ednrbl, mitfa, tyr, hag and csfrl), we used the
primer sets published in ref. 36. The sequences of M. zebra, O. niloticus and

N. brichardi were extracted from the respective genome assemblies (http://www.
broadinstitute.org/models/tilapia). The data for Astatoreochromis alluaudi,
Thoracochromis brauschi and Serranochromis macrocephalus were collected with
Sanger sequencing following the method described in ref. 36, all other data were
generated by amplicon sequencing with 454 GS FLX system at Microsynth,
Switzerland, following the manufacturer’s protocols®”*. Sequences were quality
filtered using PRINSEQ (length: 150 bp minimum; low quality: mean >15; read
duplicates)® and assembled with Burrows-Wheeler Aligner, Smith-Waterman
alignment (BWA-SW) followed by visual inspection and consensus sequence
generation in Geneious 6.1.6 (ref. 40). As a tenth marker, we included
mitochondrial NADH dehydrogenase subunit 2 (ND2) sequences available on
GenBank (see Supplementary Table 1 for accession numbers). Since the ednrbl
gene sequence is not available in the N. brichardi genome assembly, we used the
gene sequence from its sister species, N. pulcher, instead.

Sequences were aligned with MAFFT*! and the most appropriate substitution
model of molecular evolution for each marker was determined with JMODELTEST
v2.1.3 (ref. 42) and BIC*3, The partitioned data set (5,051 bp) was then subjected to
phylogenetic analyses in MRBAYES v3.2.1 (ref. 44) and GARLI v2.0 (ref. 45). MRBAYES
was run for 10,000,000 generations with two runs and four chains in parallel and a
burn-in of 25%, GarLI was run 50 times followed by a bootstrap analysis with 500
replicates. SUMTREES v3.3.1 of the DENDROPY package v3.12.0 (ref. 46) was used to
summarize over the replicates and to map bootstrap values to the ML topology.

Differential gene expression analysis using RNAseq. We used a transcriptomic
approach (RNAseq) to identify genes differentially expressed between male and
female anal fins of A. burtoni. Library construction and sequencing of RNA
extracted from three male and three female anal fins (at the developmental stage of
30 mm; Fig. 2) was performed at the Department of Biosystems Science and
Engineering, University of Basel and ETH Zurich. The samples were sequenced on
an Illumina Genome Analyzer IIx. Each sample was sequenced in one lane and
with a read length of 76 bp.

The reads were then aligned to an embryonic A. burtoni reference
transcriptome assembled by Broad Institute (http://www.broadinstitute.org/
models/tilapia). This transcriptome is not annotated and each transcript has a
nomenclature where the first term codes for the parent contig and the third term
codes for alternatively spliced transcripts (CompX_cX_seqX). The reference
transcriptome was indexed using NOVOINDEX (www.novocraft.com) with default
parameters. Using NOVOALIGN (www.novocraft.com), the RNAseq reads were
mapped against the reference transcriptome with a maximum alignment () score
of 30, a minimum of good-quality base pair per read (1) of 25 and a successive
trimming factor (s) of 5. Reads that did not match these criteria were discarded.
Since the reference transcriptome has multiple transcripts/isoforms belonging to
the same gene, all read alignment locations were reported (rALL). The mapping
results were reported (o) in SAM format. The output SAM file was then
transformed into BAM format, sorted, indexed and converted to count files
(number of reads per transcript) using SAMTOOLS version 0.1.18 (ref. 47). The
count files were subsequently concatenated into a single data set—count table—and
analysed with the R package EDGER*® in order to test for significant differences in
gene expression between male and female anal fins. The 10 most differentially
expressed transcripts were identified by BLASTx*® against GenBank’s non-
redundant database (Supplementary Table 2).

We selected two genes out of this list for in-depth analyses—fhi2a and
fhi2b—for the following three reasons: (i) fhi2b was the gene showing the highest
difference in expression between male and female anal fins; (i) the difference in
gene expression in its paralog, fhl2a, was also significantly high; and (iii) the
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functional repertoire of the Fhl2 protein family indicates that these might be strong
candidates for the morphogenesis of a secondary male colour trait.

Differential gene expression analysis using qPCR. The expression patterns of
fhi2a and fhi2b were further characterized by means of qPCR in three species,
A. burtoni, C. pulpican and N. crassus. The comparative cycle threshold method°
was used to calculate differences in expression between the different samples using
the ribosomal protein L7 (rpl7) and the ribosomal protein SA3 (rpsa3) as
endogenous controls. All reactions had a final cDNA concentration of 1ngul ~!
and a primer concentration of 200 mM. The reactions were run on a
StepOnePlusTM Real-Time PCR system (Applied Biosystems) using the SYBR
Green master mix (Roche, Switzerland) with an annealing temperature of 58 °C
and following the manufacturer’s protocols. Primers were designed with the
software GenScript Real-Time PCR (Tagman) Primer Design available at https://
www.genscript.com/ssl-bin/app/primer. All primers were designed to span over
exons to avoid gDNA contamination (see Supplementary Table 3 for details).
Primer efficiencies of the experimental primers (fhl2a and fhi2b) were comparable
to the efficiency of the endogenous controls rpl7 and rpsa3.

We conducted the following experiments: QPCR experiment 1: Egg-spots
were separated from the anal fin tissue in six male A. burtoni and five male
C. pulpican. Relative quantity values were calculated for each sample, and the
differential expression between anal fin (reference) and egg-spot tissue was
analysed with a paired f-test using GraphPad Prism version 5.0a for Mac OS X
(www.graphpad.com). qPCR experiment 2: fhi2a, fhi2b, csflra, mitfa, pnp4a and
csflb expression was measured in RNA extracted from A. burtoni fins at four
different developmental stages®?. Here, csflra was included as xanthophore
marker!®, mitfa and pnp4a as melanophore and iridophore markers®!, respectively,
and csf1b because of its role in pigment pattern organization in zebrafish?®3°, We
used three biological replicates for each developmental stage, and each replicate
consisted of a sample pool of three fins, except for the youngest stage at 15 mm,
where we pooled five fins. The first developmental stage was used as reference
tissue. QPCR experiment 3: fhi2a and fhi2b expression was measured in RNA
extracted from different tissues from three males from C. pulpican and N. crassus
(gills, liver, testis, brain, heart, eye, skin, muscle, oral jaw, pharyngeal jaw and egg-
spot). Although N. crassus does not have egg-spots, we separated its anal fin into an
area corresponding to egg-spots in haplochromines and a section corresponding to
anal fin tissue (the ‘egg-spot’ region was defined according to the egg-spot
positioning in A. burtoni). Expression was compared among tissues for each
species using gills as reference tissue. The same experiment was performed for D.
rerio and O. latipes (two teleost outgroups), using efla and rpl13a (ref. 52), as well
as rpl7 and 18sRNA (ref. 53) as endogenous controls, respectively.

Cloning of fhl2a and fhi2b and RNA in situ hybridization. A. burtoni fhi2a and
fhi2b coding fragments were amplified by PCR (for primer information, see
Supplementary Table 3) using Phusion Master Mix with High Fidelity buffer (New
England BioLabs, USA) following the manufacturer’s guidelines. These fragments
were cloned into pCR4-TOPO TA vector using the TOPO TA cloning kit (Invi-
trogen). Plasmid extractions were done with GenElute Plasmid Miniprep Kit
(Sigma-Aldrich). RNA probes were synthetized with the DIG RNA labelling kit
(SP6/T7) (Roche). The insertion and direction of the fragments was confirmed by
Sanger sequencing using M13 primers (available with the cloning kit) and BigDye
terminator reaction chemistry (Applied Biosystems) on an AB3130x! Genetic
Analyzer (Applied Biosystems). In situ hybridization was performed in 12 fins from
A. burtoni males, six for fhi2a and six for fhi2b. The protocol was executed as
described in ref. 16, except for an intermediate proteinase K treatment (20 min at a
final concentration of 15 pgml ™~ 1y and for the hybridization temperature (65 °C).

Synteny analysis of teleost fhi2 paralogs. The Synteny Database (http://synte-
nydb.uoregon.edu®®) was used to generate dotplots of the human FHL2 gene
(ENSG00000115641) region on chromosome Hsa2 and the genomes of medaka
(Supplementary Fig. 2a) and zebrafish (Supplementary Fig. 2b). Double-conserved
synteny between the human FHL2 gene and the fhl2a and fhi2b paralogons in
teleost genomes provide evidence that the teleost fhi2 paralogs were generated
during the teleost genome duplication.

fhi2a/fhi2b coding region sequencing and analysis. We then used cDNA pools
extracted from anal fin tissue to amplify and sequence the coding region of fhi2a
and fhi2b in a phylogenetically representative set of 26 cichlid species (21 Tanga-
nyikan species, three species from Lake Malawi and two species from the Lake
Victoria basin). This taxon sampling included 14 species belonging to the haplo-
chromines and 12 species belonging to other East African cichlid tribes not fea-
turing the egg-spot trait (Supplementary Table 4). fhi2a and fhi2b coding regions
were fully sequenced (from start to stop codon) in five individuals per species in
order to evaluate the rate of molecular evolution among cichlids. For PCR
amplification, we used Phusion Master Mix and cichlid-specific primers (for pri-
mer information, see Supplementary Table 3) designed with Primer3 (ref. 55). PCR
products were visualized with electrophoresis in a 1.5% agarose gel using GelRed
(Biotium, USA). In cases where multiple bands were present, we purified the
correct size fragment from the gel using the GenElute Gel Extraction Kit (Sigma-
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Aldrich). PCR products were enzymatically cleaned with ExoSAP-IT (Affymetrix,
USA) and sequenced with BigDye 3.1 Ready reaction mix (Applied Biosystems)—
after BigDye XTerminator purificaton (Applied Biosystems)—on an AB3130x]
Genetic Analyzer. Sequences were corrected, trimmed and aligned manually in
CODONCODE ALIGNER (CodonCode Corporation).

fhi2 phylogenetic analysis. fhi2a and fhi2b sequences from non-cichlid teleosts
and fhi2 sequences from tetrapods were retrieved from ENSEMBL>® (species
names, gene names and accession numbers are available in Supplementary

Table 5). We then constructed gene trees based on these sequences and on a subset
of the cichlid sequences obtained in the previous step (information available in
Supplementary Table 4) in order to confirm the orthologous and paralogous
relationships of both duplicates. Sequences were aligned with cLustaLw2 (ref. 57)
using default parameters. The most appropriate model of sequence evolution was
determined with jMODELTEST as described above. Phylogenetic analyses were
performed with MrAYEs (1 million generations; 25% burn-in).

Tests for positive selection in fhi2a and fhi2b. Using PAUP* 4.0b10 (ref. 58), we
first compiled a maximum likelihood tree based on the mitochondrial ND2 gene,
including all species used for the positive selection analyses (see Supplementary
Table 6 for species and GenBank accession numbers). We used the GTR + I' model
with base frequencies and substitution rate matrix estimated from the data (as
suggested by jMoDELTEST#?), We then ran copemr implemented in PAML version
4.4b to test for branch-specific adaptive evolution in fhl2a and fhi2b applying the
branch-site model (free-ratios model with @ allowed to Vary)59’604 The branch
comparisons and results are shown in Supplementary Table 7.

Identification of CNEs. We then made use of the five available cichlid genomes®!
to identify CNEs that could explain the difference in expression of fhl2a and fhi2b
between haplochromines and non-haplochromines (note that there are three
haplochromine genomes available: A. burtoni, Pu. nyererei, M. zebra; and

two genomes belonging to more ancestral cichlid lineages: N. brichardi and

Or. niloticus). For this analysis, we also included the respective genomic regions
of four other teleost species (O. latipes, Ta. rubripes, Te. nigroviridis and

G. aculeatus). More specifically, we extracted the genomic scaffolds containing
fhi2a and fhi2b from the available cichlid genomes using BLAST v. 2.2.25 and
the BIOCONDUCTOR R package BIOSTRINGS®? to extract 5-6 kb of sequence
containing fhi2a and fhi2b from these scaffolds.

Comparative analyses of the éthZa and fhi2b genomic regions were done with
MVISTA (genome.lbl.gov/vista)®® using the LAGAN alignment tool®%; A. burtoni
was used as a reference for the alignment. We applied the repeat masking option
with Ta. rubripes (Fugu) as reference. CNEs were defined as any non-coding
section longer than 100 bp that showed at least 70% sequence identity with
A. burtoni.

Sequencing of the upstream region of fhi2b. In order to confirm whether the
AFC-SINE insertion was specific to egg-spot bearing haplochromines, we amplified
the genomic region upstream of the fhi2b open reading frame in 19 additional
cichlid species (10 haplochromines and 9 non-haplochromines). PCR amplification
was performed as described above. For sequencing, we used four different primers,
the two used in the amplification reaction and two internal primers, one haplo-
chromine specific and another non-haplochromine specific. For detailed infor-
mation about species and primers, see Supplementary Table 8.

Alignment of AFC-SINES from the A. burtoni genome. SINE elements were
identified using the SINE insertion sequence 5’ of the fhi2b gene of A. burtoni as
query in a local BLASTn search® with default settings against the A. burtoni
reference genome. Blast hits were retrieved using custom scripts and extended to a
region of 200-bp upstream and downstream of the identified sequence. Sequences
were aligned using MAFFT v. 6 (ref. 41) with default settings and allowing for
adjustment of sequence direction according to the reference sequence. The
alignment was loaded into CODONCODE ALIGNER for manual correction and
end trimming. Sequences shorter than 50 bp were excluded from the alignment.
The final alignment contained 407 sequences that were used to build the A. burtoni
SINE consensus sequence using the consensus method implemented in
CODONCODE ALIGNER with a percentage-based consensus and a cutoff of 25%.
The AFC-SINE element in the fhi2b promoter region was compared with the
consensus sequence and available full-length AFC-SINE elements of cichlids in
order to determine whether it was an insertion or deletion in haplochromines
(Supplementary Table 8).

Characterization of fhI2b upstream genomic region in cichlids. The fhi2b
genomic regions of the five cichlid genomes (A. burtoni, M. zebra, Pu. nyererei, N.
brichardi, and O. niloticus) were loaded into CODONCODE ALIGNER and
assembled (large gap alignments settings, identity cutoff 70%). Assemblies were
manually corrected. Transposable element sequences were identified using the
Repeat Masking function of REPBASE UNIT (http://www.girinst.org/censor/

index.php) against all sequence sources and the bl2seq function of BLASTn*’.
Supplementary Fig. 6 shows a scheme of the transposable element composition of
this genomic region in several cichlid species.

CNEs construct cloning and injection in zebrafish. We designed three genetic
constructs containing the AFC-SINE and intron 1 of fhi2b of three cichlid species
(A. burtoni, P. philander and N. sexfasciatus) (Fig. 4) and one containing the 5'-
untranslated region, exon 1 and intron 1 of A. burtoni fhi2a. The three fragments
were amplified with PCR as described above (see Supplementary Table 3 for primer
information). All fragments were cloned into a pCR8/GW/TOPO vector (Invi-
trogen) following the manufacturer’s specifications. Sequence identity and direc-
tion of fragment insertion were confirmed via Sanger sequencing (as described
above) using M13 primers. All plasmid extractions were performed with GenElute
Plasmid Miniprep Kit (Sigma-Aldrich). We then recombined these fragments into
the Zebrafish Enhancer Detection ZED vector®® following the protocol specified in
ref. 66. Recombination into the ZED plasmid was performed taking into
consideration the original orientation of the fhi2b genomic region. The resulting
ZED plasmids were then purified with the DNA clean and concentrator — 5 Kit
(Zymo Research, USA). Injections were performed with 1 nl into one-/two-cell
stage zebrafish (D. rerio) embryos (A. burtoni construct was injected in wild-type
strains AB and ABXEK, P. philander and N. sexfasciatus constructs were injected
in wild-type strain ABXEK) with 25 ngpl ~! plasmid and 35 ngpl = ! Tol2
transposase mMRNA. By outcrossing to wild-type zebrafish, we created five F2 stable
transgenic lines for the A. burtoni construct, two F1 stable transgenic lines

for the P. philander construct, and finally one F1 stable transgenic line for the

N. sexfasciatus construct. Fish were raised and kept according to standard
procedures®”. Zebrafish were imaged using a Leica point scanning confocal
microscope SP5-II-matrix and Zeiss LSM5 Pascal confocal microscope.

Fixation and dehydration of cichlid fins. In order to determine the pigment cell
composition of egg-spots (and especially whether they contain iridophores in
addition to xanthophores), we dissected A. burtoni anal fins. To better understand
the morphological differences between non-haplochromine and haplochromine
fins, we further dissected three N. crassus anal fins. To visualize iridophores, we
removed the pteridine pigments of the overlying xanthophores by fixating the fin in
4% paraformaldehyde-PBS for 1h at room temperature and washing it in a series
of methanol:PBS dilutions (25%, 50%, 75% and 100%). Pictures were taken after 6
days in 100% methanol at —20°C.
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