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Abstract

Understanding the distribution of crossovers along chromosomes is crucial to evolu-

tionary genomics because the crossover rate determines how strongly a genome

region is influenced by natural selection on linked sites. Nevertheless, generalities in

the chromosome-scale distribution of crossovers have not been investigated for-

mally. We fill this gap by synthesizing joint information on genetic and physical

maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a

strong and taxonomically widespread reduction of the crossover rate in the centre

of chromosomes relative to their peripheries. We demonstrate that this pattern is

poorly explained by the position of the centromere, but find that the magnitude of

the relative reduction in the crossover rate in chromosome centres increases with

chromosome length. That is, long chromosomes often display a dramatically low

crossover rate in their centre, whereas short chromosomes exhibit a relatively

homogeneous crossover rate. This observation is compatible with a model in which

crossover is initiated from the chromosome tips, an idea with preliminary support

from mechanistic investigations of meiotic recombination. Consequently, we show

that organisms achieve a higher genome-wide crossover rate by evolving smaller

chromosomes. Summarizing theory and providing empirical examples, we finally

highlight that taxonomically widespread and systematic heterogeneity in crossover

rate along chromosomes generates predictable broad-scale trends in genetic diver-

sity and population differentiation by modifying the impact of natural selection

among regions within a genome. We conclude by emphasizing that chromosome-

scale heterogeneity in crossover rate should urgently be incorporated into analytical

tools in evolutionary genomics, and in the interpretation of resulting patterns.
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1 | INTRODUCTION

Meiosis is a specialized cell division widely conserved among sexu-

ally reproducing eukaryotes, involving one round of DNA replication

followed by two rounds of chromosome division, thus producing

haploid cells (gametes, spores) from diploid progenitors. During the

first meiotic division, homologous chromosomes pair and undergo

recombination. This involves numerous programmed DNA double-

strand breaks and the invasion of short single-stranded DNA seg-

ments into the homologous chromosome. A small fraction of the

DNA breaks are then repaired as crossovers (CO), the reciprocal

exchange of DNA segments between the homologous chromosomes

(Hunter, 2007; CO is thus only one aspect of recombination, and

hence, these two terms are not used interchangeably in this study).

CO is an intriguing biological process because of its dual mechanistic

and evolutionary implications. On the one hand, the segregation of*Quiterie Haenel and Telma G. Laurentino share first authorship, alphabetical order.
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chromosomes during the first meiotic division requires that homolo-

gous chromosomes associate physically to align together on the mei-

otic spindle in the cell’s equator, which is facilitated by CO (or

chiasma, the cytological manifestation of CO). CO is thus important

for proper chromosome disjunction. Although exceptions exist (e.g.,

the absence of CO in some dipteran males or lepidopteran females;

Gerton & Hawley, 2005; Wolf, 1994), one obligate CO per chromo-

some pair is generally considered a requirement for accurate chro-

mosome segregation and hence the production of genetically

balanced offspring (Hassold & Hunt, 2001; Hunter, 2007; Mather,

1938; Smith & Nicolas, 1998).

On the other hand, CO also has crucial evolutionary conse-

quences: by breaking and interchanging DNA segments from two

homologous chromosomes, CO generates novel combinations of alle-

les. A possible benefit of this genetic reshuffling is that favourable

alleles initially occurring on different copies of a given chromosome

can be unified into a single chromosome. This chromosome combines

the selective benefit of all the alleles it carries, and hence represents

a genotype of higher fitness than what would be possible in the

absence of CO. CO thus increases genetic variance among individuals,

therefore making natural selection in finite populations more efficient

(Burt, 2000; Felsenstein, 1974; Fisher, 1930; Hartfield & Otto, 2011;

Hill & Robertson, 1966; Kondrashov, 1982; Muller, 1932; Otto & Bar-

ton, 1997, 2001)—an effect providing a general explanation for the

evolutionary benefit of sexual over asexual reproduction. However,

the increase in genetic variation due to CO can also entail a reduction

in the mean fitness of a population, for instance when favourable epi-

static interactions among loci are broken down (Barton, 1995; Fisher,

1930), or when populations adapted to selectively different habitats

hybridize and locally favourable and unfavourable alleles become

associated (Barton & Bengtsson, 1986; Berner & Roesti, 2017; Kirk-

patrick & Barton, 2006; Ortiz-Barrientos, Reiland, Hey, & Noor,

2002).

The evolutionary consequences of CO depend strongly on the

distribution of CO along chromosomes. At a fine scale, the CO rate

is often dramatically elevated in localized “hotspots” (Baudat, Imai, &

de Massy, 2013; Choi & Henderson, 2015; Lichten & Goldman,

1995). While the distribution of hotspots and their molecular control

are under intensive investigation, less attention has been paid to the

distribution of CO along chromosomes at a broad scale. In several

organisms, it has long been noticed that the CO rate differs greatly

among broad chromosome regions (Akhunov et al., 2003; Croft &

Jones, 1989; International Human Genome Sequencing Consortium

2001; Nachman & Churchill, 1996; Rahn & Solari, 1986; Rees &

Dale, 1974), but so far, no attempt has been made to formally exam-

ine the distribution of CO at a large chromosomal scale across taxa.

The objective of this study is to fill this gap by exploiting the

recent proliferation of well-characterized CO landscapes in higher

eukaryotes (animals, plants, fungi) driven by progress in genome

sequencing and marker generation techniques. Using a meta-analyti-

cal approach, we document a widespread trend of CO to occur at a

relatively elevated rate in the chromosome peripheries. We address

the mechanisms potentially causing this pattern and highlight why

appreciating this nonrandom distribution of CO across the genome is

important to evolutionary population genomics.

2 | METHODS

2.1 | Data acquisition

To initiate our meta-analysis, we conducted a literature search for

studies characterizing the distribution of CO across the genome. We

considered two types of data sets: first, studies reporting the genetic

map position of genetic markers along with their physical base pair

position along chromosomes, that is, centimorgan (cM) vs. megabase

(Mb) data (>80% of the data sets eventually used). Second, we also

considered studies directly reporting CO rates along chromosomes

quantified as genetic map distance divided by physical map distance

for marker intervals (i.e., cM/Mb vs. Mb data). Our focus was on

organisms with an assembled genome (in a few cases, this genome

was from a close congeneric species) and with CO rates estimated

from crosses or pedigrees. Studies estimating CO rates from linkage

disequilibrium in population samples, presenting information from a

single chromosome only, or performed with low marker resolution

(fewer than ~20 markers per chromosome on average) were ignored.

In a single case (Nunes et al., 2017), we considered a marker-dense

data set presenting genetic map position against marker order (in-

stead of Mb position in a physical assembly). Visually comparing pat-

terns of cM vs. Mb to cM vs. marker order in another organism in

which both data types were available (Dohm et al., 2012, 2014) con-

firmed that the latter data type also reliably captures broad-scale CO

patterns (see also Nachman & Churchill, 1996). All species were

assigned to the categories “wild” or “domesticated”, the latter sub-

suming all systems at least potentially having experienced selection

by humans (i.e., domesticated, cultivated or classical laboratory model

organisms). For species in which suitable CO data were available from

multiple independent investigations, we prioritized the study with the

most reliable genome assembly and/or the highest marker resolution.

In some studies, the relevant raw data were presented directly in

tabulated form. Otherwise, we extracted information from graphics

using webplotdigitizer (http://arohatgi.info/WebPlotDigitizer). In

graphics permitting the identification of individual raw data points,

the latter were digitized directly. When marker resolution was rela-

tively sparse, we considered all available data points (ignoring obvi-

ous outliers caused by genome misassembly). In high-resolution

studies with heavily overlapping data points, we digitized only a sub-

set of points per chromosome sufficient to capture broad-scale CO

patterns accurately (a few such data sets digitized independently by

multiple researchers confirmed that this subsampling produced highly

reproducible CO rate data). In cases where the data were presented

as line graphics (e.g., smoothed profiles along chromosomes), and

hence, the raw data were not accessible, we superposed a grid of

equidistant lines orthogonal to the Mb axis on the plot of each chro-

mosome and digitized the intersections between grid and data lines.

This grid was adjusted to span the entire chromosome and included

either 26 lines for cM vs. Mb plots, or 25 lines for cM/Mb vs. Mb
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plots, eventually yielding CO rate estimates for a minimum of 25

windows along each chromosome across all studies. In studies pro-

viding CO information separately for both sexes or for multiple

crosses, data were extracted separately for each category and then

averaged for analysis (note that in Drosophila, CO occurs only in

females; we nevertheless considered this species for analysis,

although excluding it did not influence any conclusion). To avoid bias

by unusual patterns of CO in sex chromosomes, we restricted data

acquisition to autosomes in those studies identifying a sex chromo-

some. In a few studies, a subset of chromosomes had to be ignored

because they showed massive macro-assembly problems (large mar-

ker gaps, or genetic map position failing to increase monotonically

over large chromosome regions). All raw data sets are available on

the Dryad repository (https://doi.org/10.5061/dryad.p1j7n43).

2.2 | Characterizing the broad-scale distribution of
CO across taxa

A first goal was to visualize the broad-scale distribution of CO along

chromosomes across all species within each of the three organismal

kingdoms (animals, plants, fungi). For studies providing cM vs. Mb

data, this initially required calculating the CO rate (cM/Mb) for inter-

vals of adjacent markers. To achieve comparability, physical mid-

point positions of marker intervals were then scaled according to a

standard chromosome length of one, and CO rates were divided by

their respective chromosome average rate (i.e., mean-standardized,

Houle, 1992; qualitatively similar results leading to the same conclu-

sions were obtained by standardizing CO rates by the chromosome-

specific standard deviation, or by performing no standardization at

all). These adjustments made variation in CO rate within chromo-

somes independent from differences in physical length and in abso-

lute CO rate among chromosomes and organisms. Within each

species, we next combined standardized CO rates from all chromo-

somes according to their relative chromosome position. For this, we

assigned CO rate data points from all chromosomes (scaled to unit

length) to one of 25 adjacent windows and computed for each win-

dow the median CO rate across chromosomes (using the mean to

combine the data points within an organism produced similar result).

Finally, the species-specific CO rates thus summarized were aver-

aged across species within each kingdom for each of the 25 chromo-

some windows for visualization (data available as Appendix S2). We

also calculated 95% confidence intervals (CIs) around the window-

specific means by bootstrap resampling among the species 10,000

times (Manly, 2007; throughout the study, CIs around point esti-

mates were calculated analogously). For selected species, we also

visualized the standardized CO rate along an exemplary chromosome

at the original marker resolution and physical chromosome scale.

2.3 | Influence of the centromere on the broad-
scale distribution of CO

The above analysis revealed a general broad-scale reduction in CO

rate across the centres of chromosomes (see Section 3). To gain

insights into potential underlying causes, we explored to what

extent this heterogeneity in CO rate is related to the position of the

centromere, a chromosome region essential for proper chromosome

segregation and exhibiting a reduced CO rate (Talbert & Henikoff,

2010). This analysis focused on the subset of species for which cen-

tromere positions were available. These positions had to be inferred

from DNA sequence motifs or other physical markers, not from the

distribution of CO. We further ignored species with short chromo-

somes (less than ~20 Mb on average), because we found that pro-

nounced broad-scale heterogeneity in CO rate was often lacking on

short chromosomes (see Section 3), thus precluding a meaningful

analysis of the centromere’s role in driving such heterogeneity. In

the 17 total species satisfying these criteria (Table 1; references to

the studies characterizing centromere position in these species are

given in Table S1), we assigned all chromosomes to one of six total

morphological categories. These included metacentric, submetacen-

tric, subtelocentric, acrocentric and telocentric chromosomes, as

defined by a decreasing ratio of the short to the long chromosome

arm (Levan, Fredga, & Sandberg, 1964). These five categories thus

provide a crude description of how central or peripheral the cen-

tromere is located within a chromosome. The sixth category was the

holocentric chromosomes lacking a single well-defined centromere.

Here the spindle fibres guiding chromosome segregation can attach

along the entire chromosome (Dernburg, 2001; Melters, Paliulis,

Korf, & Chan, 2012). To assess whether the broad-scale reduction in

CO rate across chromosome centres is determined by centromere

position, we took two qualitative, visual approaches (quantitative

analysis was precluded by heterogeneity in the quality of cen-

tromere position information across studies): first, we focused on

species with the same morphology across all chromosomes. For

these species, we graphed the median standardized CO rate for

each of the 25 chromosome windows as described above and then

compared the distribution of the CO rate between species differing

in chromosome morphology. The second approach focused on dif-

ferent chromosome morphologies occurring within species. We here

again plotted window-specific standardized CO rates, but this time

separately for each chromosome morphology category within a spe-

cies (at least three chromosomes per morphological category were

required). In both analyses, our prediction was that if the cen-

tromere position determines the broad-scale CO landscape, chromo-

somes exhibiting peripheral centromeres should lack a systematic

reduction in CO rate around chromosome centres.

2.4 | Relationship between CO rate and
chromosome length

Observations during data acquisition raised the possibility that the

strength of the reduction in CO rate within chromosome centres

relative to peripheries (see Section 3) could be related to chromo-

some length. This idea was investigated both among and within

species. For the former, we reused the standardized CO rates cal-

culated for each chromosome in each species as described above.

For each chromosome, we calculated the mean CO rate across all
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TABLE 1 Species of higher eukaryotes included in our meta-analysis of crossover rate, sorted by organismal kingdom and class (animals) or
family (plants)

Kingdom Class/Family Species Common name Author

Animals Actinopterygii Colossoma macropomum Tambaqui Nunes et al. (2017)

Animals Actinopterygii Cyprinus carpio Carp Xu et al. (2014)

Animals Actinopterygii Danio rerio Zebrafish Bradley et al. (2011)

Animals Actinopterygii Gasterosteus aculeatusw,c Threespine stickleback Roesti et al. (2013)

Animals Actinopterygii Ictalurus punctatus Catfish Liu et al. (2016)

Animals Actinopterygii Lates calcariferw Asian seabass Wang et al. (2017)

Animals Aves Ficedula albicollisw Collared flycatcher Kawakami et al. (2014)

Animals Aves Gallus gallus Chicken Groenen et al. (2009)

Animals Aves Taeniopygia guttata Zebra finch Backstr€om et al. (2010)

Animals Branchiopoda Daphnia magnaw Daphnia Duki�c, Berner, Roesti, Haag, and Ebert (2016)

Animals Chromadorea Caenorhabditis briggsaec Nematode Ross et al. (2011)

Animals Chromadorea Caenorhabditis elegansc Nematode Rockman and Kruglyak (2009)

Animals Insecta Aedes aegyptiw,c Yellow fever mosquito Juneja et al. (2014)

Animals Insecta Apis mellifera Honeybee Solignac et al. (2007)

Animals Insecta Bactrocera cucurbitae Melon fly Sim and Geib (2017)

Animals Insecta Bombus terrestrisw Bumblebee Liu et al. (2017)

Animals Insecta Drosophila melanogaster Fruit fly Comeron, Ratnappan, and Bailin (2012)

Animals Insecta Heliconius melpomenew,c Postman butterfly Davey et al. (2016)

Animals Insecta Laupala kohalensis x paranigraw Cricket Blankers, Oh, Bombarely, and Shaw (2017)

Animals Insecta Nasonia vitripennisw,c Wasp Niehuis et al. (2010)

Animals Mammalia Bos taurusc Cattle Arias, Keehan, Fisher, Coppieters, and Spelman (2009)

Animals Mammalia Canis lupus familiarisc Dog Wong et al. (2010)

Animals Mammalia Cervus elaphusw,c Red deer Johnston et al. (2017)

Animals Mammalia Felis catusc Cat Li et al. (2016)

Animals Mammalia Homo sapiensw,c Human Jensen-Seaman et al. (2004)

Animals Mammalia Mus musculusc Mouse Jensen-Seaman et al. (2004)

Animals Mammalia Ovis ariesc Sheep Johnston et al. (2016)

Animals Mammalia Pan troglodytes verusw,c Chimpanzee Auton et al. (2012)

Animals Mammalia Rattus norvegicusc Rat Jensen-Seaman et al. (2004)

Animals Mammalia Sus scrofa Pig Tortereau et al. (2012)

Fungi Dothideomycetes Zymoseptoria triticiw Croll, Lendenmann, Stewart, and McDonald (2015)

Fungi Saccharomycetes Saccharomycetes cerevisiae Baker’s yeast Cherry et al. (2012)

Fungi Sordariomycetes Fusarium graminearumw Laurent et al. (2017)

Plants Amaranthaceae Beta vulgarisc Sugar beet Dohm et al. (2014)

Plants Asteraceae Helianthus annuus Sunflower Renaut et al. (2013)

Plants Brassicaceae Arabidopsis thaliana Thale cress Giraut et al. (2011)

Plants Brassicaceae Brassica napus Rapeseed Wang et al. (2015b)

Plants Brassicaceae Brassica rapa Chinese cabbage Huang, Yang, Zhang, and Cao (2017)

Plants Cucurbitaceae Citrullus lanatus Watermelon Ren et al. (2012)

Plants Cucurbitaceae Cucumis melo Melon Argyris et al. (2015)

Plants Fabaceae Cicer arietinum Chickpea Deokar et al. (2014)

Plants Fabaceae Glycine max Soybean Schmutz et al. (2010)

Plants Fabaceae Phaseolus vulgarisc Common bean Bhakta, Jones, and Vallejos (2015)

Plants Juglandaceae Juglans regiaw Walnut Luo et al. (2015)

Plants Malvaceae Gossypium hirsutum Cotton Wang et al. (2015a)

(Continues)
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marker intervals having their physical mid-point within 10 Mb from

either chromosome tip (using 5 Mb only produced very similar

results) and divided this value by the chromosome-wide average

CO rate. The resulting “CO periphery-bias” provided a standard-

ized descriptor of the CO distribution along a chromosome, with a

value near one indicating a relatively evenly distributed CO rate,

and greater positive values indicating a concentration of CO

towards the chromosome tips. Next, we defined the length of

each chromosome as the Mb position of the terminal marker inter-

val mid-point, calculated mean CO periphery-bias and chromosome

length across the chromosomes within each species and assessed

if chromosome length predicted the CO distribution when using

species as data points. This was carried out using Spearman’s rank

correlation (hereafter simply “correlation” because we always

applied the Spearman method to quantify the strength of associa-

tion between variables) and included all species except the single

one lacking physical chromosome positions (Nunes et al., 2017).

The correlation between CO periphery-bias and chromosome

length was further explored within species (i.e., using chromosomes

as data points). To ensure sufficient sensitivity, this latter analysis

was restricted to species represented by at least six chromosomes

in our data set, exhibiting at least one chromosome longer than

30 Mb, and showing an at least twofold length difference between

the shortest and longest chromosome. The distribution of species-

specific correlation coefficients was then evaluated within animals

(N = 16) and plants (N = 11) separately (the species used for this

analysis are listed in Appendix S3). To confirm the adequacy of

our CO periphery-bias metric, we repeated the above analyses by

quantifying the distribution of CO along a chromosome using two

alternative methods: the coefficient of a quadratic regression of

standardized CO rate vs. Mb position and the ratio of mean

peripheral to central CO rate based on the crude centre-periphery

delimitation used in Berner and Roesti (2017). All these analyses

produced qualitatively similar results supporting the same conclu-

sions, so we report only results obtained with the main method

(data available as Appendix S3).

Because the above analysis indicated that the CO distribution

within chromosomes was related to chromosome length, we next

explored whether chromosome length also predicted the average

chromosome-wide CO rate (i.e., cM/Mb across the entire chromo-

some, ignoring within-chromosome heterogeneity). Again, this analy-

sis was performed among and within species (data available as

Appendix S4). For the former, we cumulated genetic and physical

map length across all chromosomes of each species in our data set

for which raw cM information was available (N = 52). Dividing total

cumulative genetic map length by its physical counterpart then

yielded an estimate of the average CO rate for a chromosome—and

of the average CO rate across the entire genome—in a given spe-

cies. Finally, we examined if this quantity was related to median

chromosome length when using species as data points. In an analo-

gous analysis within species, we divided genetic by physical map

length for each chromosome and calculated the correlation between

this average CO rate and physical length across chromosomes within

each species represented by at least six chromosomes in our data

set. The distribution of correlation coefficients was then evaluated

across species separately within each kingdom.

TABLE 1 (Continued)

Kingdom Class/Family Species Common name Author

Plants Malvaceae Theobroma cacao Cocoa Argout et al. (2011)

Plants Phrymaceae Mimulus guttatusw Monkey flower Holeski et al. (2014)

Plants Poaceae Brachypodium distachyon Purple false brome Huo et al. (2011)

Plants Poaceae Oryza sativa Rice Tian et al. (2009)

Plants Poaceae Setaria italica Foxtail millet Zhang et al. (2012)

Plants Poaceae Sorghum bicolor Sorghum Bekele, Wieckhorst, Friedt, and Snowdon (2013)

Plants Poaceae Triticum aestivum Wheat Gardner, Wittern, and Mackay (2016)

Plants Poaceae Zea mays Maize Bauer et al. (2013)

Plants Rosaceae Fragaria vesca Woodland strawberry Shulaev et al. (2011)

Plants Rosaceae Malus pumila Apple Daccord et al. (2017)

Plants Rosaceae Prunus persica Peach International Peach Genome Initiative (2013)

Plants Rutaceae Citrus clementina Clementine Wu et al. (2014)

Plants Salicaceae Populus deltoides Eastern cottonwood Tong et al. (2016)

Plants Salicaceae Populus simonii Simon poplar Tong et al. (2016)

Plants Solanaceae Capsicum annuum Pepper Hill et al. (2015)

Plants Solanaceae Solanum lycopersicum Tomato Tomato Genome Consortium (2012)

Plants Solanaceae Solanum tuberosum Potato Endelman and Jansky (2016)

Superscripts following species names indicate studies in which the crosses or pedigrees underlying genetic mapping were derived from wild individuals

(w), and for which information on centromere position was available (c).
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2.5 | Relationship between CO rate and gene
density

A major evolutionary consequence of CO is that selectively relevant

genetic variation from multiple copies of a given chromosome can be

recombined. The efficacy of this process depends on the distribution

of CO relative to the distribution of genetic information units along

chromosomes. Our finding of heterogeneity in the distribution of CO

thus raised the important question whether the density of genes is

also heterogeneous at the scale of entire chromosomes. To explore

this question, we first retrieved data from BIOMART (http://www.bioma

rt.org) on the physical location of protein-coding genes along chromo-

somes (considering only autosomes, when known) in all species with

annotated genomes (16 animals, 14 plants, 3 fungi; total N = 33). The

broad-scale distribution of gene density was then characterized analo-

gously to the distribution of CO along chromosomes: each chromo-

some in each species was scaled to unit length and divided into 25

windows of equal width, and the number of genes falling into each

window was determined. Variation in gene density among species, and

among chromosomes within species, was accounted for by scaling

window-specific gene counts along a given chromosome by the mean

number of genes across all windows on that chromosome. Relative

gene density thus obtained was then summarized for each species by

calculating the median value over all chromosomes for each of the 25

windows. Finally, we averaged the species-specific relative gene densi-

ties for each window and estimated the associated 95% bootstrap CIs,

separately for each kingdom. In addition, we quantified the strength of

the association between gene density and CO rate within each animal

and plant species by the correlation coefficient calculated with win-

dow-specific median values as data points, and evaluated the distribu-

tion of this statistic in both kingdoms (due to small sample size, this

distribution was again not evaluated in fungi). We note that these

analyses made the assumption that the density of potential selective

targets in a chromosome region can be expressed based on gene

counts. This assumption appears reasonable, given a strong correspon-

dence between gene number and total coding sequence length at least

at a broad scale (Berner & Roesti, 2017).

2.6 | Relationship between CO rate and the
magnitude of population differentiation

In a final set of analyses, we examined how the interaction between

broad-scale heterogeneity in CO rate and divergent natural selection

can influence patterns of genetic differentiation in genome-wide

marker-based population comparisons. We here reused single

nucleotide polymorphism (SNP) data generated through RAD

sequencing in threespine stickleback fish (Gasterosteus aculeatus)

adapted to ecologically different habitats (ocean, lake, stream) in the

Vancouver Island region (Canada; Roesti, Gavrilets, Hendry, Salzbur-

ger, & Berner, 2014; Roesti, Hendry, Salzburger, & Berner, 2012).

Specifically, we focused on a pair of populations that diverged

between the lake and its adjacent outlet stream habitat in the Boot

Lake watershed (our “lake–stream” population comparison), and a

pair involving a marine and a geographically close freshwater

(stream-resident) population (Sayward estuary and Robert’s stream;

our “marine–freshwater” population comparison). Detailed informa-

tion on the ecology and adaptive divergence of these populations

and on the generation of the SNP data is provided in Berner, Adams,

Grandchamp, and Hendry (2008), Berner, Grandchamp, and Hendry

(2009) and Roesti et al. (2012, 2014). For both population compar-

isons, SNPs were first quality filtered as described in Roesti et al.

(2014) and then used to calculate the absolute allele frequency dif-

ference (AFD) as a simple metric of population differentiation (Shri-

ver et al., 1997). Considering data from the 20 autosomes only (i.e.,

the known sex chromosome was excluded) and using only the one

SNP per RADtag producing the highest AFD, we obtained differenti-

ation values from 3,622 SNPs for the lake–stream and 9,351 SNPs

for the marine–freshwater comparison. Given a genome size of

~460 Mb for threespine stickleback (Jones et al., 2012), the marker

resolution in these data sets was relatively low (the expected spacing

between SNPs was ~130 and 50 kb) but still sufficient to character-

ize broad-scale trends in population differentiation (Roesti et al.,

2012, 2014).

We first generated differentiation profiles along chromosomes for

each population comparison, averaging AFD values from individual

SNPs across nonoverlapping sliding windows of 1 Mb. Next, we

assessed to what extent differentiation values were correlated

between the two—ecologically different (lake–stream vs. marine–

freshwater)—population comparisons. For this, we calculated the

correlation between the two comparisons across all nonoverlapping,

genome-wide sliding windows, considering different window sizes:

0.1, 0.2, 0.5, 1, 2, 3 and 4 Mb. As this analysis revealed an increasingly

strong correlation between the two differentiation profiles with

increasing window size (see Section 3), we hypothesized that increas-

ing window size should also lead to a stronger genome-wide associa-

tion between CO rate and differentiation within each population

comparison. We tested this prediction by calculating the average CO

rate for all windows based on genome-wide CO rate data from Roesti,

Moser, and Berner (2013) and quantified how strongly this variable

was correlated with the average population differentiation calculated

for the same windows. As above, this procedure was repeated for dif-

ferent window sizes ranging from 0.1 to 4 Mb. Finally, our observation

that heterogeneity in the distribution of CO is related to their physical

length (see Section 3) motivated two analyses focusing on the relation-

ship between chromosome length and the magnitude of population

differentiation. In the first analysis, we calculated for each of the two

population comparisons the chromosome-specific overall magnitude

of genetic differentiation based on the median AFD value across all

SNPs on a chromosome. Then, we calculated the correlation between

overall differentiation and chromosome length separately for each

population comparison. In the second analysis, we defined the SNPs

from the top 5% of the genome-wide AFD distribution in each popula-

tion comparison as “high-differentiation SNPs” and calculated for each

chromosome the proportion of high-differentiation SNPs among the

total SNPs on that chromosome (thus accounting for different absolute

SNP numbers among chromosomes). Then, we tested if this proportion
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was correlated to chromosome length. All these analyses excluded the

sex chromosome (19), and additionally chromosome 21; the latter

because this chromosome harbours a large (>2 Mb) inversion (Jones

et al., 2012; Roesti, Kueng, Moser, & Berner, 2015) confounding the

broad-scale CO distribution (including chromosome 21 did not qualita-

tively change any conclusion). All analyses and plotting were per-

formed with R (R Core Team 2017); codes are available upon request.

3 | RESULTS AND DISCUSSION

3.1 | Data set for meta-analysis

Our literature search identified 62 species in which CO rates were

linked to chromosome-level genome assemblies, including 30 ani-

mals, 29 plants and 3 fungi (Table 1). Our data set is thus well suited

for generalizations about the CO landscape in animals and plants,

but less so in the fungal kingdom. The data set is clearly dominated

by species of economic relevance and laboratory model systems,

which is not surprising, given that generating a chromosome-level

genome assembly remains a substantial investment. For the vast

majority of species (>90%), CO information suitable to this study

was available in graphical form only. To facilitate future investiga-

tions, we encourage authors to publish raw genetic map positions in

cM together with physical Mb positions for all markers in tabulated

and hence more easily accessible form.

3.2 | Reduced CO rate in chromosome centres is a
major trend in eukaryotes

Our meta-analysis revealed a striking broad-scale pattern across the

animal and plant data sets: chromosome centres displayed a

dramatically reduced CO rate compared to the chromosome periph-

eries (Figure 1). In animals, the rate of peripheral CO was more than

2.5 times higher than the CO rate in the central region of chromo-

somes, and in plants, this difference was more than fivefold. Animals

further displayed a clear drop in CO rate towards the very tips of

the chromosomes. Additional exploration of the plant data (including

filtering for those species with the highest marker resolution and

with annotated and hence probably high-quality genomes, and con-

sidering different chromosome length classes; details not presented)

strongly suggested that the absence of a (strong) terminal drop in

CO rate in plants is real, and not an artefact. In contrast to animals

and plants, fungal species did not exhibit a clear broad-scale trend in

the distribution of CO, although the data for this organismal king-

dom were sparse. To ensure that the pattern seen in animals and

plants was not driven by specific taxonomic groups, we additionally

analysed data separately for all animal classes and plant families

listed in Table 1, provided they were represented by at least three

different genera (i.e., ray-finned fishes [Actinopterygii], birds, insects

and mammals; Fabaceae, Poaceae and Rosaceae). This confirmed

that a reduced CO rate in chromosome centres is taxonomically

widespread within the animal and plant kingdoms (Figure S1 in

Appendix S1). In addition, we examined if there was an influence of

artificial selection on the distribution of CO. The motivation was that

strong selection and small population size—typical conditions under

domestication—are expected theoretically to impose indirect selec-

tion on genetic variants that increase the CO rate (Barton & Otto,

2005), a prediction with mixed empirical support (Burt & Bell, 1987;

Mu~noz-Fuentes et al., 2015; Rees & Dale, 1974; Ross-Ibarra, 2004).

While we see no reason why domestication should drive consistent

evolution in the physical location of CO along chromosomes, we nev-

ertheless graphed the average CO landscape for the pool of all
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animals classified as wild (N = 12, Table 1; a meaningful analogous

analysis in plants was precluded by the low number of wild species,

N = 2). Wild animals also exhibited the strong reduction in CO rate

in chromosome centres observed across the complete data sets (Fig-

ure S1), ruling out domestication as an explanation for the observed

trend in the distribution of CO.

3.3 | Broad-scale heterogeneity in CO rate is not
well explained by centromere position

An intuitive explanation for CO to occur primarily towards the

peripheries of a chromosome is that CO may be inhibited in

the chromosome’s centres if this region harbours the centromere.

The centromere is a chromosome region typically characterized by a

core of DNA sequence repeats serving as the assembly site of the

kinetochore, a protein complex to which the spindle fibres required

for proper chromosome segregation attach. In addition, the cen-

tromere is possibly also involved in chromosome sorting during the

very early stages of meiosis (Allshire & Karpen, 2008; Da Ines,

Gallego, & White, 2014; Malik & Henikoff, 2009; McFarlane &

Humphrey, 2010; Zickler & Kleckner, 2016). Around the centromere,

CO is well known to be suppressed (Beadle, 1932; Harushima et al.,

1998; Lambie & Roeder, 1986; Mahtani & Willard, 1998; Rahn &

Solari, 1986; Sherman & Stack, 1995). In yeast, for instance, molecular

components of the kinetochore complex inhibit DNA double-strand

breaks—a necessary precursor of CO—near the centromere and pre-

vent DNA breaks in the broader neighbourhood of the centromere to

be repaired as CO (Ellermeier et al., 2010; Vincenten et al., 2015).

Two aspects of centromeres, however, challenge their general

importance as determinants of the broad-scale chromosomal distri-

bution of CO across species. The first is the centromeres’ relatively

small size. Consequently, centromere-associated CO suppression

may be a relatively localized phenomenon within a chromosome

only. Indeed, CO inhibition extends over just a few kilobases around

the centromere in budding yeast (Vincenten et al., 2015), and over

2.3 Mb on a rice chromosome investigated (Yan et al., 2005). It is

thus not evident how an extensive low-CO region on a chromosome

hundreds of megabases in length (see below) could be mediated by

the centromere alone. The second aspect challenging the idea that

regions of low CO rate in chromosome centres are driven by cen-

tromeres is that centromeres are not necessarily located in the phys-

ical centre of chromosomes. Hence, if the centromere was a major

broad-scale determinant of the CO distribution, we would expect

bias in CO rate towards chromosome peripheries to be restricted to

chromosomes harbouring the centromeres near their centre. We

assessed this prediction qualitatively by comparing the distribution

of CO among species with different overall chromosome morpholo-

gies, as defined by their relative centromere position. This analysis

revealed that species exhibiting exclusively acro- or telocentric chro-

mosomes—that is, having centromeres located close to one chromo-

some end—still display reduced CO rates across the chromosome

centre (or the centre of the longer chromosome arm) (Figure 2, left

column; the pattern in species with metacentric chromosomes is

shown in Figure S2). Moreover, some species with holocentric chro-

mosomes, hence lacking a single well-defined centromeric domain,

show the same broad-scale trend. Similar insights emerged from the

comparison of different chromosome morphologies within species

(Figure 2, right column; Figure S2). Collectively, these observations

in no way challenge that the centromere influences the CO land-

scape, but show that the centromere alone fails to provide a univer-

sal explanation for the general broad-scale reduction in CO rate in

chromosome centres seen across taxa.

3.4 | The distribution of CO is predicted by
chromosome length

As a next step, we explored if the broad-scale distribution of CO

was related to the length of chromosomes. For this, we quantified

the relative elevation in CO rate in the chromosome peripheries by

our CO periphery-bias statistic, and related this statistic to chromo-

some length. Pooling all species as data points in a single analysis

revealed a clear association: organism lacking a marked reduction in

the CO rate in chromosome centres (i.e., exhibiting CO periphery-

bias around one) were those displaying short chromosomes, and the

CO distribution became increasingly periphery-biased as chromo-

some length increased (Figure 3a; Spearman’s rank correlation:

rS = 0.86, 95% CI: 0.74–0.93). This association also held when ana-

lysing animals and plants separately (animals: rS = 0.79, 95% CI:

0.52–0.93; plants: rS = 0.87, 95% CI: 0.68–0.95). A clear relationship

between chromosome length and CO periphery-bias also emerged

within species: the correlation between these two variables among

chromosomes was almost consistently positive, and often strongly

so, in both animals and plants (Figure 3b).

In combination, these analyses make clear that the magnitude of

periphery-bias in CO rate is a function of the length of a chromo-

some. Organisms lacking a pronounced reduction in CO rate in chro-

mosome centres are those having short chromosomes, typically

below some 20 Mb. This includes species such as Arabidopsis thali-

ana, some social insects (honeybee, bumblebee) and, importantly, all

fungi in our data set (the CO distribution along a representative

chromosome from each of three species with short chromosomes is

shown in Figure S3, left). Fungi are known to generally have short

chromosomes (Cervelatti, Ferreira-Nozawa, Aquino-Ferreira, Fachin,

& Martinez-Rossi, 2004), and this may well be the simple reason

why our analysis of this group indicates a CO distribution qualita-

tively different from that seen in the other kingdoms (Figure 1). By

contrast, the species in our data set exhibiting very long chromo-

somes, including wheat, maize, pepper, sunflower and several mam-

mals, generally have CO restricted to short peripheral chromosome

regions separated by a vast CO desert (three examples are shown in

Figure S3, right). Based on these observations, it is tempting to pro-

pose a simple conceptual model in which CO occurs preferentially

within a characteristic distance from the chromosome tips, and the

total length of a chromosome then determines the physical extent of

the central low-CO region (Figure 4). As suggested by Figure 3a, this

characteristic distance may often be within some 10 Mb (see also
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Johnston, Berenos, Slate, & Pemberton, 2016; Pratto et al., 2014;

Roesti et al., 2013; Smeds, Mugal, Qvarnstrom, & Ellegren, 2016).

According to this view, short chromosomes consist primarily of high-

CO periphery. Before we evaluate the plausibility of this model in

the light of evidence from investigations of the mechanisms govern-

ing meiosis, we consider a prediction regarding the genome-wide CO

rate implicit in this model.

3.5 | Peripheral CO causes a negative association
between average CO rate and chromosome length

The above conceptual model predicts that genomes consisting of

short chromosomes, and hence mainly peripheral chromosome

regions exhibiting a high CO rate, should show higher overall (i.e.,

genome-wide) CO rates than genomes consisting of long chromo-

somes with physically extensive centres of low CO rate. This predic-

tion was confirmed: among species, we found a striking negative,

nonlinear association between the average CO rate of chromosomes

(or, equivalently, cumulative cM/Mb across the entire genome) and

median chromosome length (Figure 5a, left panel, all species pooled;

rS = �0.92, 95% CI: �0.95 to �0.83). Extreme CO rates occurred in

the species with the smallest chromosomes, including the two fun-

gus species available for this specific analysis. A similar relationship

emerged when analysing animals (rS = �0.90, 95% CI: �0.96 to

�0.77) and plants (rS = �0.84, 95% CI: �0.94 to �0.60) separately.

Interestingly, this relationship could be approximated by making the

simplified assumption of a universal genetic map length of 50 cM

per chromosome, corresponding to a single CO per chromosome and

meiosis, and dividing this standard genetic map length by different

physical chromosome lengths covering the range of median chromo-

some lengths observed in our organisms (Figure 5a, right panel).

Chromosome length thus emerges as a remarkably strong predictor

of the genome-wide CO rate among species, challenging the recent

suggestion (Stapley, Feulner, Johnston, Santure, & Smadja, 2017)

that features of genome architecture are relatively unimportant

determinants of broad-scale CO rate variation among eukaryotes.

Our insights from the analysis among species were further reinforced

by relating CO rate to chromosome length within species. In both

animals and plants, the correlation between these two variables was

generally strongly negative among chromosomes (Figure 5b; the
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distribution of correlation coefficients was not visualized for fungi

because only two species were available, but both species also

showed a negative coefficient; see also Backstr€om et al., 2010; Gir-

aut et al., 2011; International Human Genome Sequencing Consor-

tium 2001; Jensen-Seaman et al., 2004; Johnston, Huisman, Ellis, &

Pemberton, 2017; Kaback, Guacci, Barber, & Mahon, 1992; Roesti

et al., 2013; Smeds et al., 2016; Tortereau et al., 2012).

Taken together, these analyses suggest that the genome-wide

CO rate in eukaryotes is strongly determined by the relative propor-

tion of the genome having a high rate of CO, that is, the proportion

of peripheral DNA. For a given genome size, an organism may thus

achieve a higher rate of CO—and thus stronger reshuffling of

genetic variation—by distributing its total DNA among a greater

number of smaller chromosomes. In the animal kingdom, particularly

high genome-wide CO rates have been reported from social hyme-

nopteran insects (Sirvi€o et al., 2006; Wilfert, Gadau, & Schmid-

Hempel, 2007), with 37 cM/Mb in the honey bee (Beye et al., 2006;

Liu et al., 2015; Solignac, Mougel, Vautrin, Monnerot, & Cornuet,

2007), 14 cM/Mb in Pogonomyrmex ants (Sirvi€o, Pamilo, Johnson,

Page, & Gadau, 2011a), 9.7 cM/Mb in the common wasp (Sirvi€o,

Johnston, Wenseleers, & Pamilo, 2011b) and 8.7 cM/Mb in the

bumblebee (Liu et al., 2017). The evolutionary reason for this high

average CO rate is not well understood, but perhaps reflects the

need for rapid adaptation to fast-evolving pathogens to which social

insects seem particularly strongly exposed, or for compensating the

sex-limited recombination associated with haplo-diploid sex determi-

nation (Sirvi€o et al., 2006; Wilfert et al., 2007). However, these CO

rates do not appear exceptionally high when taking heterogeneity in

CO along chromosomes into account: species exhibiting a very low

genome-wide CO rate (e.g., sunflower, wheat: 0.3 and 1.1 cM/Mb)

reach similarly high CO rates as social insects when averaging exclu-

sively over the terminal 5 Mb on either side of each chromosome

(14.9 and 9.3 cM/Mb; see also Roesti et al., 2013; Pratto et al.,

2014)—that is, when considering a total chromosome segment

approximating median chromosome length in the honeybee

(10.7 Mb) or bumblebee (14.5 Mb). Hence, a key feature of CO dis-

tinguishing some social insect species from other animals is that their

genomes are split into many short chromosomes (Wilfert et al., 2007)

lacking extensive central regions with a low CO rate. The same likely

applies to fungi, a group also exhibiting very high genome-wide

recombination rates and short chromosomes (Awadalla, 2003; Cerve-

latti et al., 2004; Stapley et al., 2017; Wilfert et al., 2007). Like social

insects, many fungi also interact with other organisms as pathogens

or through symbiosis, and have limited opportunity for recombination

due to extensive haploid life phases, both of which may have

selected for a high CO rate across their genomes. These considera-

tions highlight the limited information conveyed by estimates of the

average, genome-wide CO rate. Understanding to which extent

genetic variation is shuffled by CO requires knowledge about the

actual distribution of the CO rate within and among chromosomes.

3.6 | What causes the high CO rate in chromosome
peripheries?

We have argued that a conceptual model in which CO happens

mainly within some distance from the chromosome tips, irrespective

of total chromosome length, helps explain associations between the

average CO rate, the distribution of CO and chromosome length. Is
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there any mechanistic evidence in support of such a model? Indeed,

an elegant explanation for periphery-bias in CO rate is related to the

choreography of chromosomes and the spatio-temporal sequence of

recombination initiation during meiosis. Higher eukaryotes generally

share a phase in the early stages of meiosis during which the telom-

eres (i.e., the chromosome tips) aggregate at the nuclear membrane,

while the chromosome centres remain closer to the nucleus’ centre

(Harper, Golubovskaya, & Cande, 2004; Naranjo & Corredor, 2008;

Scherthan et al., 1996; Zickler & Kleckner, 2016). This stage, often

referred to as the “meiotic bouquet” (Scherthan, 2001), is followed by

rapid chromosome oscillations during which the chromosomes alter-

nately disperse and aggregate (Klutstein & Cooper, 2014). This move-

ment is again coordinated by the telomeres, which remain in contact

with the nuclear membrane. The function of the bouquet and the

oscillations remains incompletely understood, but very likely they

enable homology search and the pairing of chromosomes (Bass et al.,

2000; Chacon, Delivani, & Tolic, 2016; Curtis, Lukaszewski, & Chrza-

stek, 1991; Ding, Yamamoto, Haraguchi, & Hiraoka, 2004; Gerton &

Hawley, 2005; Lee, Conrad, & Dresser, 2012; Lefrancois, Rockmill,

Xie, Roeder, & Snyder, 2016; Page & Hawley, 2003). Intriguingly,

these telomere-guided processes may also influence the location of

CO along chromosomes: evidence from several organisms suggests

that synapsis, that is, the establishment of a physical connection

between homologous chromosomes, and associated DNA double-

strand breaks required for CO are initiated from the chromosome

tips, and that the repair of these breaks as CO is more likely in the

chromosome peripheries than the centres (Anderson & Stack, 2005;

Bass et al., 2000; Brown et al., 2005; Croft & Jones, 1989; Higgins,

Osman, Jones, & Franklin, 2014; Klutstein & Cooper, 2014;

Lukaszewski, 1997; Pratto et al., 2014; Viera, Santos, & Rufas, 2009;

Xiang, Miller, Ross, Alvarado, & Hawley, 2014). The telomere-guided

initiation of chromosome homology search and recombination could

thus be part of the explanation why CO occurs primarily towards the

chromosome peripheries (Scherthan et al., 1996; Zickler & Kleckner,

2016).

Another potentially important aspect is crossover interference,

that is, the inhibition of additional CO in the vicinity of an existing

CO along a chromosome (Muller, 1916; Sturtevant, 1915). This is

suggested by sexual dimorphism in the distribution of CO: remark-

ably consistently across species, the enrichment of CO near the

telomeres is more pronounced in the male than the female sex (Bro-

man, Murray, Sheffield, White, & Weber, 1998; Cox et al., 2009; Gir-

aut et al., 2011; Johnston et al., 2016, 2017; Lien et al., 2011; Ma

et al., 2015; Smeds et al., 2016). Interestingly, the sexes also appear

to differ in the structural organization of meiotic chromosomes, with

the paired homologous chromosomes being less condensed in

oocytes than spermatocytes (Tease & Hulten, 2004). If CO interfer-

ence operates at the same spatial (i.e., lm, not base pairs) scale in

both sexes, CO interference will therefore extend over a shorter

base pair distance in females than males (Kochakpour & Moens,

2008; Petkov, Broman, Szatkiewicz, & Paigen, 2007). Consequently,

male CO may be strongly limited to the chromosome tips where the

first obligate CO occurs, whereas in females, additional CO may

occur along the chromosomes, thus leading to a more homogeneous

distribution of CO and an elevated overall CO count in females.

Evaluating these ideas will require a more complete mechanistic

understanding of meiosis based on experimental evidence from a

wide variety of organismal systems.
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3.7 | Implications of broad-scale heterogeneity in
CO rate for evolutionary genomics

So far, we have demonstrated predictable broad-scale heterogeneity

in CO rate along chromosomes, but what is the significance of this

variation to evolutionary genomic theory and empirical analysis? A piv-

otal aspect of the CO rate is that it determines the physical scale of

linked selection within a genome: allele frequency shifts driven by nat-

ural selection on a given locus extend relatively deeply into the locus’

nonselected chromosomal neighbourhood when the locus is situated

in a low-CO region, but decay over a shorter physical scale when the

locus resides in a high-CO region (Maynard Smith & Haigh, 1974).

Such linked selection has received distinct names in different evolu-

tionary contexts, including “background selection” when the selected

polymorphisms arise from new deleterious mutation (Charlesworth,

Morgan, & Charlesworth, 1993; Hudson & Kaplan, 1995; Nordborg,

Charlesworth, & Charlesworth, 1996); “genetic draft” when the poly-

morphisms arise from new beneficial mutations (Gillespie, 2000); and

“gene flow barrier” when the polymorphisms arise from genetic

exchange between populations under divergent selection (Aeschba-

cher, Selby, Willis, & Coop, 2017; Barton, 1979; Barton & Bengtsson,

1986; Berner & Roesti, 2017; Feder & Nosil, 2010; Roesti et al.,

2014). These processes differ in detail. For instance, background selec-

tion is considered inevitable and ubiquitous because the majority of

mutations are generally considered deleterious (Lynch et al., 1999).

However, although plausibly occurring more rarely, new beneficial alle-

les arising from mutation will rise from initially low frequency, causing

more intense selection than low-frequency deleterious mutations

(Cutter & Payseur, 2013). Also, both background selection and genetic

draft rely on new mutations and therefore have little impact on short

time scales (Burri, 2017). By contrast, gene flow barriers can emerge

rapidly by selection on standing genetic variation, although they

require some level of genetic exchange between diverging populations

(Berner & Roesti, 2017; see also Samuk et al., 2017). Despite these

nuances, the different forms of linked selection can be housed under a

single conceptual roof because they are all similarly affected by the

CO rate. Importantly, natural selection implies a reduction in effective

population size and hence elevated stochasticity in the transmission of

genetic variation across generations (genetic drift) at a locus. By modi-

fying the physical scale of linked selection around a locus, the CO rate

thus influences the strength of drift in a genome region, and hence,

the level of genetic diversity maintained within populations and of

genetic differentiation among populations (Charlesworth, 1998; Cutter

& Payseur, 2013; Nachman & Payseur, 2012).

Combined with the widespread broad-scale reduction in CO rate

in chromosome centres relatively to chromosome peripheries, the

above theory on linked selection predicts that populations should

commonly harbour relatively low levels of genetic variation in chro-

mosome centres, and that comparisons between populations should

find relatively elevated genetic differentiation in chromosome cen-

tres (Figure 6). Genome-wide marker-based studies indeed support

this prediction (Burri et al., 2015; Carneiro et al., 2014; Dutoit et al.,

2017; Gante et al., 2016; Roesti et al., 2012, 2013; Samuk et al.,

2017; Tine et al., 2014). However, elucidating the details in the

underlying linked selection will often be difficult. The reason is that

background selection and genetic draft are notoriously hard to disen-

tangle (Comeron, 2017; Cutter & Payseur, 2013). Moreover, gene

flow between population and species can persist over long time

spans (Berner & Salzburger, 2015), so that selection on new muta-

tions and selection against immigrant alleles (gene flow barrier) may

shape patterns in genetic variation jointly (Aeschbacher et al., 2017).

Only when divergence between populations is so recent that a sub-

stantial contribution from selection on new mutations can be ruled

out, broad-scale patterns in genetic diversity and population differ-

entiation can be ascribed to linked selection caused by heterogeneity

along chromosomes in the strength of gene flow barriers.

The above reflections make clear that heterogeneity in the distri-

bution of CO across the genome is a key determinant of hetero-

geneity in the distribution of genetic variation within and between

populations. Equally important, however, is the distribution of selec-

tive targets along chromosomes: if regions of low CO rate coincide

with regions of low gene density, selection on new mutations or

maladaptive immigrant alleles may not necessarily drive heterogene-

ity in diversity and differentiation across the genome (Aeschbacher

et al., 2017; Cutter & Payseur, 2013; Payseur & Nachman, 2002).

The reason is that the wider physical extent of linked selection in a

low-CO region is counterbalanced by a reduced probability of selec-

tion to target this region in the first place. Understanding how

heterogeneous CO rate modifies the consequences of selection

across the genome thus benefits from knowledge about the broad-

scale distribution of selection targets along chromosomes. This moti-

vated our analysis of the density of genes along chromosomes, con-

sidering the subset of species in our data set for which annotated

F IGURE 6 Relationship between heterogeneous CO rate and
selection density along a chromosome. If the CO rate is reduced in
the chromosome centre relative to the peripheries (top), selection on
a locus (shown as black vertical bar) in the centre will cause linked
selection to extend deeper into the locus’ chromosomal
neighbourhood than in the peripheries (middle; the strength of
linked selection is visualized by the blue shade). Consequently,
selection at many loci—due to continued mutation over long
timescales and/or to gene flow between populations in selectively
different habitats—will generate a relatively elevated cumulative
density of linked selection in the chromosome centre (bottom). This
elevated selection density implies a reduction in effective population
size, and hence stronger drift, in chromosome centres. Chromosome
centres will therefore harbour less genetic variation within
populations and exhibit elevated genetic differentiation among
populations, relative to the peripheries

2488 | HAENEL ET AL.



genomes were available. We found no indication of systematic

broad-scale heterogeneity in gene density along chromosomes in

animals or fungi (Figure 7a): in these groups, genes appear dis-

tributed relatively evenly along chromosomes (noting that sample

size for fungi was low). In striking contrast, a clear pattern emerged

in plants: on average, gene density proved ~3.5 times higher towards

the chromosome peripheries than in the chromosome centres. These

findings were confirmed by examining the correlations between gene

density and CO rate within each species: in animals, the correlation

coefficients peaked around zero, whereas in plants, the correlations

were consistently positive and mostly very strong (Figure 7b). Our

investigation thus highlights a peculiarity of plant genomes: genes

tend to be located in chromosome regions crossing over relatively

frequently (see also Gaut, Wright, Rizzon, Dvorak, & Anderson,

2007; Mezard, 2006; Schnable, Hsia, & Nikolau, 1998). As recombi-

nation is a potent mechanism of DNA loss counteracting the prolif-

eration of transposable elements, it is possible that in many plant

species, chromosome centres with a low CO rate have developed

into gene-poor regions through the accumulation of repetitive DNA

(Bennetzen, 2000; Puchta, 2005; Hawkins, Grover, & Wendel, 2008;

Schubert & Vu, 2016; see also Nam & Ellegren, 2012; Kapusta, Suh,

& Feschotte, 2017). Nevertheless, the heterogeneity in CO rate

across plant genomes on average still exceeds the heterogeneity in

gene density, although not as strongly as in animals (dotted lines in

Figure 7a). The consequences of natural selection should thus tend

to be more profound in chromosome centres than in the peripheries

in both taxonomic groups, but particularly strongly so in animals.

3.8 | Empirical demonstration of analytical
challenges of broad-scale heterogeneity in CO rate to
evolutionary genomics

As described above, a relatively reduced CO rate across chromosome

centres in combination with selection can drive systematically elevated

population differentiation in chromosome centres. This has serious but

insufficiently recognized implications to analytical approaches com-

monly employed in evolutionary genomics. Importantly, the identifi-

cation of so-called outlier loci—that is, genetic markers showing

particularly strong population differentiation relative to the genome-

wide background level and hence considered footprints of divergent

selection—can be misleading when using outlier detection approaches

ignoring heterogeneity in the CO landscape. Such outliers will tend to

be overrepresented in genome regions of low CO rate (Noor & Bennett

2009; Berner & Roesti, 2017) because loci under selection and their

selectively neutral chromosomal neighbourhood can reach stronger

population differentiation through cumulative linked selection in low-

CO regions (Roesti et al., 2012, 2013; Aeschbacher et al., 2017; see

Roesti et al., 2012 for a pragmatic approach to adjust marker data for

such broad-scale heterogeneity in differentiation). A related inferential

problem can arise in investigations of genomic parallelism in evolution.

The extent to which repeated adaptive phenotypic divergence in multi-

ple population pairs occurs by responses to divergent selection in the

same genes is an important question in evolutionary genomics (Arendt

& Reznick, 2008; Bailey, Blanquart, Bataillon, & Kassen, 2017). Popular

approaches to addressing this question include evaluating the
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proportion of high-differentiation outliers (individual markers, or chro-

mosome windows) shared among multiple population comparisons, or

to examine whether a correlation in the magnitude of differentiation in

markers or chromosome windows exists among multiple population

comparisons. Shared outliers and/or correlated differentiation are then

often interpreted as indication that divergent natural selection has tar-

geted the same genes in multiple population pairs, and hence as evi-

dence of parallel evolution at the molecular level. However, such

analyses are frequently performed with low physical marker resolution

(recent examples: Egger, Roesti, B€ohne, Roth, & Salzburger, 2017; Per-

reault-Payette et al., 2017; Ravinet et al., 2016; Raeymaekers et al.,

2017; Rougemont et al., 2017; Stuart et al., 2017; Trucchi, Frajman,

Haverkamp, Sch€onswetter, & Paun, 2017). Consequently, single mark-

ers are highly unlikely to coincide with polymorphisms under direct

selection. Shared population differentiation captured by such marker or

chromosome window data may thus primarily mirror common patterns

in cumulative linked selection density shaped by a shared broad-

scale CO landscape, thus precluding reliable conclusions about

(non)parallelism in the specific targets of divergent selection (Berner &

Roesti, 2017). This view is particularly plausible when shared patterns

in genome-wide differentiation emerge across lineages separated for a

long time (Burri et al., 2015; Dutoit et al., 2017; Renaut, Owens, &

Rieseberg, 2014; Van Doren et al., 2017; see also Hobolth, Dutheil,

Hawks, Schierup, & Mailund, 2011). We emphasize that studies using

high-density markers (e.g., as obtained by whole-genome sequencing)

are not immune to such confounding if marker-specific differentiation

data are averaged across large chromosome windows.

To illustrate these conceptual issues with empirical data, we re-

analysed relatively low-resolution SNP data from two ecologically dis-

tinct population comparisons of threespine stickleback fish (Roesti

et al., 2012, 2014), that is, a lake–stream and a marine–freshwater

population pair. Chromosome window-based profiles of population

differentiation revealed strikingly elevated differentiation in chromo-

some centres, a pattern evident in both ecologically different population

comparisons (Figure 8a). As a consequence, the magnitude of win-

dow-specific differentiation was correlated between the two
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population pairs, increasingly strongly so when averaging differentia-

tion values across SNPs for increasingly large physical windows (Fig-

ure 8b). A naive interpretation of this association would be that

selection has targeted the same genes in both population compar-

isons. A more parsimonious explanation, however, is that irrespective

of the precise targets of selection and the underlying ecological con-

text in each population pair, gene flow barriers have driven shared

patterns of broad-scale neutral differentiation across the genome.

Indeed, stickleback exhibit strongly reduced CO rates in chromosome

centres (Roesti et al., 2013; Glazer, Killingbeck, Mitros, Rokhsar, &

Miller, 2015; see also Figure 2), and adaptive divergence in both lake–

stream and marine–freshwater stickleback systems is well known to

occur in the face of gene flow and to involve selection on a large num-

ber of genes (Berner et al., 2009; Hagen, 1967; Jones, Brown, Pem-

berton, & Braithwaite, 2006; Jones et al., 2012; Lescak et al., 2015;

Roesti et al., 2014, 2015; Terekhanova et al., 2014)—conditions facili-

tating the emergence of heterogeneous differentiation through varia-

tion in the strength of gene flow barriers along chromosomes (Berner

& Roesti, 2017). (Note that divergence in both population pairs is

postglacial and hence too recent for mutation-based linked selection

to significantly influence differentiation profiles.) Accordingly, both

population comparisons also exhibited a negative genome-wide corre-

lation between population differentiation and CO rate, a relationship

increasing in strength with decreasing analytical resolution (Figure 8b).

Moreover, in line with the general observation that the relative reduc-

tion in CO rate around chromosome centres increases with chromo-

some length, we found stronger overall population differentiation and

a relative excess of high-differentiation SNPs (i.e., adjusted for total

SNP number on a chromosome) on longer chromosomes (Figure 8c,

d). In diverging stickleback populations, chromosome length thus

appears to influence genome-wide heterogeneity in the opportunity

for genetic exchange between populations by determining hetero-

geneity in the strength of gene flow barriers along chromosomes.

The above analytical challenges emphasize the value of two

resources in evolutionary genomics: the first is a chromosome-level

genome assembly. Combined with genetic map data, an assembly

allows characterizing the CO landscape and recognizing broad-scale

trends in diversity and differentiation, thus potentially revealing an

interaction between the distribution of CO and selection density. The

second key resource is a high marker resolution. Inference about tar-

gets of selection—a major goal in many evolutionary genomic studies

—requires an analytical resolution much finer than the broad scale of

the patterns in genetic variation driven by heterogeneity in CO-

mediated selection density. We argue that in the light of widespread

variation in CO rate along chromosomes, these two aspects deserve

more weight when designing evolutionary genomic investigations.

4 | CONCLUSION

Our synthesis of the distribution of crossovers in 62 species reveals

a taxonomically widespread trend for CO to occur primarily towards

the peripheries of chromosomes. This distribution of CO rate is

closely linked to the physical length of chromosomes and strongly

influences the genome-wide average CO rate. Although we can rule

out the centromere as major driver of this chromosome-scale

heterogeneity in CO rate, substantial progress in recombination

research will be needed to identify the underlying mechanistic deter-

minants, and to allow assessing to what extent these determinants

are shared among organisms. Given the strong impact of the CO

landscape on the consequences of natural selection to genetic diver-

sity within and between populations, quantifying and embracing

heterogeneity in CO rate should become a standard element of ana-

lytical approaches and their interpretation in evolutionary genomics.
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